matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEindeutigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Eindeutigkeit
Eindeutigkeit < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eindeutigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Do 08.12.2011
Autor: theresetom

Aufgabe
Zeige die Eindeutigkeit des Einselements .


[mm] \exists [/mm] 1 [mm] \in [/mm] M mit 1 [mm] \not= [/mm]  0 so dass 1* n = n *1

1 eindeutig?
Angenommen wenn 1' * n = n * 1'

1' = 1' * 1 = 1 * 1' = 1
=> 1' = 1

Stimmt das so "?
LG

        
Bezug
Eindeutigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Do 08.12.2011
Autor: fred97


> Zeige die Eindeutigkeit des Einselements .
>  [mm]\exists[/mm] 1 [mm]\in[/mm] M mit 1 [mm]\not=[/mm]  0 so dass 1* n = n *1


Besser: 1* n = n *1  für alle n [mm] \in [/mm] M.

>  
> 1 eindeutig?
>  Angenommen wenn 1' * n = n * 1'

Wieder:  1' * n = n * 1'  für alle n [mm] \in [/mm] M

>  
> 1' = 1' * 1 = 1 * 1' = 1
>  => 1' = 1

>  
> Stimmt das so "?

Ja

FRED

>  LG


Bezug
                
Bezug
Eindeutigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Do 08.12.2011
Autor: theresetom

danke *
LG

Bezug
                        
Bezug
Eindeutigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Do 08.12.2011
Autor: theresetom

Hei ;)
Ich hätte noch eine Frage, will aber keinen eigenen Post noch aufmachen, da es nur kurze Verständnisfragen sind:

1) Sind die ( [mm] \IZ, [/mm] +, * )
und ( [mm] \IR, [/mm] +, *) kommutative, nullteilerfreie Ringe mit Einselement?
(-> ich weiß, dass ( [mm] \IR, [/mm] +, *) auch ein körper ist.

2) Ein Polynom
p (x) = [mm] \sum_{i=0}^n a_i x^i [/mm]
ict auch ein nullteilerfreier kommutativer Ring mit Einselement oder?

3)
Ist ( [mm] \IR [/mm] ohne 0, * ) eine Gruppe?
Wie kann es eine Gruppe sein, wenn es bezüglich multiplikation ist?- Bei gruppen haben wir doch nur die Addition!

Bezug
                                
Bezug
Eindeutigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 Do 08.12.2011
Autor: leduart

Hallo
bei einer Gruppe hat man eine Verknüpfung, die kann man mit dem Zeichen +, oder * oder [mm] \circ [/mm] oder noch nem Zeichen bezeichnen, wie kommst du grade auf Addition?
z. Bsp deine im anderen post benutzten f,g auf [mm] S_3 [/mm] was bedeutet dort "Addition" wenn du definierst , was du damit meinst kannst du f+g, f*g, [mm] f\circ [/mm] g,  f§g usw. schreiben.
(bei den reellen Zahlen ist natürlich mit * die multipl. von reellen Zahlen gemeint)
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]