matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieEin Kongruenzsystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Ein Kongruenzsystem
Ein Kongruenzsystem < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ein Kongruenzsystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:08 Sa 02.05.2009
Autor: Leni-H

Aufgabe
Zeigen Sie:

[mm] \IZ=(1+2\IZ)\cup(1+3\IZ)\cup(2+4\IZ)\cup(0+6\IZ)\cup(4+8\IZ)\cup(8+12\IZ) [/mm]

Hallo,

ich habe Probleme bei dieser Aufgabe. Im Prinzip muss ich ja zeigen, dass jede ganze Zahl x in einer dieser Mengen (Restklassen) drin liegt.
Ich habe schon angefangen zu unterscheiden:

1.Fall: x ungerade -> x=2m+1 für ein m [mm] \in \IZ [/mm] -> x [mm] \in (1+2\IZ) [/mm]

2. Fall: x gerade ....

Aber wie kann ich jetzt bei den geraden Zahlen noch Fälle unterscheiden, sodass ich später alle ganzen Zahlen mit drin hab. Und woher weiß ich, ob und wann ich alle ganzen Zahlen durchgemacht habe?

Vielen Dank schonmal für eine Antwort!

Liebe Grüße!

        
Bezug
Ein Kongruenzsystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Sa 02.05.2009
Autor: Leni-H

Hat hier niemand einen Tipp für mich?

Bezug
        
Bezug
Ein Kongruenzsystem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Sa 02.05.2009
Autor: zahlenspieler

Hallo [mm] Leni_h, [/mm]
> Zeigen Sie:
>  
> [mm]\IZ=(1+2\IZ)\cup(1+3\IZ)\cup(2+4\IZ)\cup(0+6\IZ)\cup(4+8\IZ)\cup(8+12\IZ)[/mm]
>  Hallo,
>  
> ich habe Probleme bei dieser Aufgabe. Im Prinzip muss ich
> ja zeigen, dass jede ganze Zahl x in einer dieser Mengen
> (Restklassen) drin liegt.
>  Ich habe schon angefangen zu unterscheiden:
>  
> 1.Fall: x ungerade -> x=2m+1 für ein m [mm]\in \IZ[/mm] -> x [mm]\in (1+2\IZ)[/mm]
>  
> 2. Fall: x gerade ....
>  
> Aber wie kann ich jetzt bei den geraden Zahlen noch Fälle
> unterscheiden, sodass ich später alle ganzen Zahlen mit
> drin hab. Und woher weiß ich, ob und wann ich alle ganzen
> Zahlen durchgemacht habe?

Da 24 das KGV der Zahlen 2, 3, 4, 6, 8, 12 ist, würde ich die Restklassen mod. 24 durchgehen. Z.b. sind die Zahlen in [mm] 8 +24\IZ \cup 20 +24\IZ[/mm] kongruent 8 modulo 12; die Zahlen in [mm]4 +8\IZ \cup 12 +8\IZ[/mm] kongruent 4 mod 8 usw.
Hoffe das hilft

Thomas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]