matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenEigenwertmethode
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Eigenwertmethode
Eigenwertmethode < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwertmethode: Verfahren bei doppelter Nullst
Status: (Frage) beantwortet Status 
Datum: 21:51 Fr 11.05.2007
Autor: Rinho

Aufgabe
Guten Tag!

Ich bin auf folgende DGl gestoßen:
[mm]\dot u [/mm]= -3u -v +t
[mm]\dot v[/mm] = u - v + t²

und diese soll mit der Eigenwertmethode und Variation der Konstanten (Anfangsbed. hab ich auch gegeben) gelöst werden.

Beim Bestimmen der Nullstellen des charakt. Polynoms tritt die -2 als doppelte Nullstelle auf, meine Frage ist, welcher Ansatz nun gewählt werden muss?
Ist
[mm] {a \choose b} [/mm][mm]e^-2t\[/mm] +[mm] {c \choose d}[/mm] t * [mm]e^-2t[/mm]
der richtige Ansatz?

        
Bezug
Eigenwertmethode: IO
Status: (Antwort) fertig Status 
Datum: 22:02 Fr 11.05.2007
Autor: ron

Hallo,

für die n-fache Nullstelle  [mm] \lambda [/mm] des ch. Polynomes einer DGL gilt für den Ansatz zur Lösung:

[mm] t^0e^{-t \lambda} [/mm] + [mm] t^1e^{-t^1 \lambda} [/mm] + ...+ [mm] t^{n-1}e^{-t \lambda} [/mm]

Somit ist der Ansatz in dieser Hinsicht richtig gewählt.

Viel Erfolg

ron

Bezug
                
Bezug
Eigenwertmethode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:16 Fr 11.05.2007
Autor: Rinho

Das Minuszeichen im Exponenten der e-Funktion ist auch richtig?
Dann wäre mein Ansatz in diesem Fall ja falsch, da es [mm]e^{2t}[/mm] sein müsste, da die -2 die doppelte Nullstelle ist?

Bezug
                        
Bezug
Eigenwertmethode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Fr 11.05.2007
Autor: Rinho

Alles klar, ich hab es selber gelöst. Keine weiteren Antworten benötigt.
Das Minuszeichen in dem Exponenten bei deiner Antwort war nicht korrekt.
Vielen Dank trotzdem.

Bezug
                                
Bezug
Eigenwertmethode: Super
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:34 Mo 14.05.2007
Autor: ron

Hallo,
habe da wirklich einen kleinen Fehlerteufel reingebaut mit dem Vorzeichen, sorry. Hat aber anscheinend nicht geschadet die richtig Lösung zu finden!

Ron

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]