matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenEigenwerte zu einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Eigenwerte zu einer Matrix
Eigenwerte zu einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte zu einer Matrix: Durch Transformation anders?
Status: (Frage) beantwortet Status 
Datum: 20:40 Fr 08.07.2011
Autor: zoj

Aufgabe
Gegeben:
[mm] \pmat{ 0 & -1 & -2 \\ -1 & 0 & -2 \\ -2 & -2 & -3} [/mm]

Bestimmen Sie alle Eigenwerte und geben Sie eine Basis der Eigenräume an.

Bei meiner Frage geht es um die Eigenwerte:

Normalerweise muss man das Charakteristische-Polinom aufstellen und durch die Determinante die Eigenwerte bestimmen.

Bei manchen 3x3 Matrizen kann das schon kompliziert werden.
Dann habe ich mir überlegt die Matrix erstmal auf Zeilenstufenform zu bringen. Dann stehen ja die Eigenwerte auf der Hauptdiagonalen.

Das Problem ist jetzt, dass ich andere Eigenwerte rausbekomme, als in der Musterlösung.

Heißt es, dass durch die Umformung der Matrix sich die Eigenwerte ändern?

Die umgeformte Matrix lautet bei mir:
[mm] \pmat{ -2 & -2 & -3 \\ 0 & -1 & -16 \\ 0 & 0 & 0} [/mm]
Eigenwerte(umgeformte Matrix): [mm] \lambda_{1}=-2 [/mm] , [mm] \lambda_{2}=-1, \lambda_{3}=0 [/mm]

In der Musterlösung kommen folgende Eigenwerte raus:
Eigenwerte(Musterlösung): [mm] \lambda_{1}=1 [/mm] , [mm] \lambda_{2}=1, \lambda_{3}=5 [/mm]


        
Bezug
Eigenwerte zu einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Fr 08.07.2011
Autor: Applepie

Ja, die Eigenwerte einer Matrix ändern sich, wenn du sie vorher auf Zeilen/Stufenform bringst.
Also lieber klassisch die Eigenwerte berechnen, vielleicht hilft dir aber entwickeln nach einer Zeile bzw. Spalte dann weiter, dann muss man später das Polynom nicht mehr umständlich durch Nullstellensuche umformen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]