matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraEigenwerte und Eigenvektorren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Eigenwerte und Eigenvektorren
Eigenwerte und Eigenvektorren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und Eigenvektorren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 So 04.02.2007
Autor: Mathezwerg

Aufgabe
Bestimmen Sie die Eigenwerte und Eigenvektoren der reellen Matrix
A= [mm] \pmat{ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0} [/mm]

Hallo zusammen,
Eigentlich hatte ich mit dieser Aufgabe keine Probleme:
Das charakteristische Polynom ist [mm] x^4-2x^3+2x-1 [/mm]
Und Eigenwerte sind: dreifach 1 und einfach -1
aber bei den Eigenvektoren gibts ein Problem:
Eigenvektor von -1 ist [mm] \vektor{-1 \\ 0 \\ 0 \\ 1} [/mm]
Aber als ich den Eigenraum von A zum Eigenwert 1 errechnet habe ergab sich folgendes:
[mm] \pmat{ 1 & 0 & 0 & -1 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 } [/mm]
Ok, zwei Eigenvektoren sind klar:
[mm] \vektor{1 \\ 0 \\ 0 \\ 1} \vektor{0 \\ 1 \\ 0 \\ 0} [/mm]
Aber es müssten ja drei sein... normalerweise hätte ich gesagt Nullvektor, aber der ist ja per Definition kein Eigenvektor.
Bin mir mit meinen Rechnungen ziemlich sicher weil ich sie etwa fünfzehn mal überprüft habe... wäre klasse wenn mir jemand sagen könnte was ich nun machen muss.
mfG
Mathezwerg

        
Bezug
Eigenwerte und Eigenvektorren: Freie Variable
Status: (Antwort) fertig Status 
Datum: 16:03 So 04.02.2007
Autor: Infinit

Hallo Mathezwerg,
für den Eigenwert bei 1 hast Du ja schon die beiden Vektoren ausgerechnet, denn der Zusammenhang lautet
$$ [mm] x_1 [/mm] = [mm] x_4 [/mm] $$ und
$$ [mm] x_3 [/mm] = 0 [mm] \, [/mm] .$$
Für $ [mm] x_2 [/mm] $ lässt sich ein beliebiger Wert einsetzen, nenne wir ihn t, das gleiche gilt für $ [mm] x_1 [/mm] $, ich nenne ihn hier s.
Damit sieht ein Lösungsvektor folgendermaßen aus:
$$ [mm] \vec{x} [/mm] = [mm] \vektor{s \\ t \\ 0 \\ s} \, [/mm] . $$
Oder etwas anders geschrieben:
$$ s [mm] \vektor{1 \\ 0 \\ 0 \\ 1} [/mm] + t [mm] \vektor{0 \\ 1 \\ 0 \\ 0} [/mm] $$
Jede Linearkombination aus diesen beiden Vektoren ist ein gültiger Eigenvektor.
Viele Grüße,
Infinit

Bezug
                
Bezug
Eigenwerte und Eigenvektorren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 So 04.02.2007
Autor: Mathezwerg

Hallo!
Danke für die schnelle Antwort, hatte vergessen das es natürlich ganze Räume sind und nicht nur ein vektor pro wert (nicht lachen;))
mfG
Mathezwerg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]