matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte und Eigenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte und Eigenvektoren
Eigenwerte und Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und Eigenvektoren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:23 Mo 31.10.2011
Autor: mike1988

Aufgabe
Man bestimme eine symetrische 2x2 Matrix mit den Eigenwerte [mm] \lambda1 [/mm] = -1 und [mm] \lambda2 [/mm] = 2, sowie den Eigenvektoren [mm] \overrightarrow{V}1=\vektor{1 \\ 1} [/mm] und [mm] \overrightarrow{V}2=\vektor{1 \\ -1} [/mm]

Hallo!

Bin etwas ratlos bei dieser Fragestellung!

Mein Ansatz:

Habe mal die gesuchte Matrix mit A = [mm] \pmat{ a & b \\ b & c } [/mm] aufgestellt ==> 3 Unbekannte! Da ich die Eigenvektoren kenne, kann ich aus der Formel [mm] (A-\lambda1*I)*\overrightarrow{v}=\overrightarrow{0} [/mm] schon mal 2 Unbekannte bestimmen - nur wie mache ich weiter??

Stimmt der Ansatz bis hir hin??

Besten Dank für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwerte und Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Mo 31.10.2011
Autor: fred97


> Man bestimme eine symetrische 2x2 Matrix mit den Eigenwerte
> [mm]\lambda1[/mm] = -1 und [mm]\lambda2[/mm] = 2, sowie den Eigenvektoren
> [mm]\overrightarrow{V}1=\vektor{1 \\ 1}[/mm] und
> [mm]\overrightarrow{V}2=\vektor{1 \\ -1}[/mm]
>  Hallo!
>  
> Bin etwas ratlos bei dieser Fragestellung!
>  
> Mein Ansatz:
>  
> Habe mal die gesuchte Matrix mit A = [mm]\pmat{ a & b \\ b & c }[/mm]
> aufgestellt ==> 3 Unbekannte! Da ich die Eigenvektoren
> kenne, kann ich aus der Formel
> [mm](A-\lambda1*I)*\overrightarrow{v}=\overrightarrow{0}[/mm]

Du meinst sicher

[mm](A-\lambda_1*I)*\overrightarrow{v_1}=\overrightarrow{0}[/mm]

Schrieb diese LGS doch mal hin !!!

Das gleiche machst Du mit

[mm](A-\lambda_2*I)*\overrightarrow{v_2}=\overrightarrow{0}[/mm]

Insgesamt bekommst Du 4 Gleichungen für die 3 Unbekannten a,b,c.

FRED

>  schon
> mal 2 Unbekannte bestimmen - nur wie mache ich weiter??
>  
> Stimmt der Ansatz bis hir hin??
>  
> Besten Dank für eure Hilfe!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Eigenwerte und Eigenvektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:39 Mo 31.10.2011
Autor: mike1988

Super, Danke!

Habe die Lösung nun errechnet!

Wünsche noch einen angenehmen Tag!

Mfg

Bezug
                        
Bezug
Eigenwerte und Eigenvektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:15 Mo 31.10.2011
Autor: fred97


> Super, Danke!
>  
> Habe die Lösung nun errechnet!
>  
> Wünsche noch einen angenehmen Tag!

Ebenso

FRED

>  
> Mfg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]