matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenEigenwerte und Eigenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Eigenwerte und Eigenvektoren
Eigenwerte und Eigenvektoren < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und Eigenvektoren: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 19:39 Di 22.12.2015
Autor: Manu271

Aufgabe
Es sei $K$ [mm] \in \{\IR, \IC \} [/mm] und [mm] \{e_1,e_2,e_3 \} [/mm] die Standardbasis des [mm] K^3. [/mm] Bestimmen Sie sämtliche Eigenwerte und Eigenvektoren des Endomorphismus [mm] L_k: K^3 \to K^3, [/mm] der durch
[mm] L_k(e_1)=e_2, L_k(e_2)=e_3 [/mm] und [mm] L_k(e_3)=e_1 [/mm] festgelegt ist.

Hallo,

ich habe obige Aufgabe als Übung erhalten und möchte wissen, was ihr von meiner Lösung haltet:

Aus [mm] L_k(e_1)=e_2, L_k(e_2)=e_3, L_k(e_3)=e_1 [/mm] folgt die darstellende Matrix bzgl. der Basis [mm] \{e_1,e_2,e_3\}: [/mm]
[mm] \pmat{ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0} [/mm]

Jetzt sei [mm] v=\vektor{ v_1 \\ v_2 \\ v_3} \in K^3. [/mm]

[mm] \pmat{ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0} \vektor{ v_1 \\ v_2 \\ v_3} [/mm] = [mm] \lambda \vektor{ v_1 \\ v_2 \\ v_3}. [/mm]
Daraus folgt: [mm] v_3=\lambda v_1 [/mm]
              [mm] v_1=\lambda v_2 [/mm]
              [mm] v_2=\lambda v_3 [/mm]
und daraus folgt wiederum: [mm] \lambda [/mm] = 1 und v = [mm] \vektor{ w \\ w \\ w} [/mm] mit w [mm] \in [/mm] K.

Also ist der Eigenwert 1 und die Eigenvektoren alle Vektoren mit der Form [mm] \vektor{ w \\ w \\ w} [/mm] wobei w  [mm] \not= [/mm] 0.

Zumindest für den Fall [mm] K=\IR [/mm] sollte das doch stimmen, oder ?

Liebe Grüße

Manu271

        
Bezug
Eigenwerte und Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Mi 23.12.2015
Autor: fred97


> Es sei [mm]K[/mm] [mm]\in \{\IR, \IC \}[/mm] und [mm]\{e_1,e_2,e_3 \}[/mm] die
> Standardbasis des [mm]K^3.[/mm] Bestimmen Sie sämtliche Eigenwerte
> und Eigenvektoren des Endomorphismus [mm]L_k: K^3 \to K^3,[/mm] der
> durch
>  [mm]L_k(e_1)=e_2, L_k(e_2)=e_3[/mm] und [mm]L_k(e_3)=e_1[/mm] festgelegt
> ist.
>  Hallo,
>  
> ich habe obige Aufgabe als Übung erhalten und möchte
> wissen, was ihr von meiner Lösung haltet:
>  
> Aus [mm]L_k(e_1)=e_2, L_k(e_2)=e_3, L_k(e_3)=e_1[/mm] folgt die
> darstellende Matrix bzgl. der Basis [mm]\{e_1,e_2,e_3\}:[/mm]
> [mm]\pmat{ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0}[/mm]
>
> Jetzt sei [mm]v=\vektor{ v_1 \\ v_2 \\ v_3} \in K^3.[/mm]
>  
> [mm]\pmat{ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0} \vektor{ v_1 \\ v_2 \\ v_3}[/mm]
> = [mm]\lambda \vektor{ v_1 \\ v_2 \\ v_3}.[/mm]
>  Daraus folgt:
> [mm]v_3=\lambda v_1[/mm]
>                [mm]v_1=\lambda v_2[/mm]
>              
>   [mm]v_2=\lambda v_3[/mm]
>  und daraus folgt wiederum: [mm]\lambda[/mm] = 1
> und v = [mm]\vektor{ w \\ w \\ w}[/mm] mit w [mm]\in[/mm] K.
>  
> Also ist der Eigenwert 1 und die Eigenvektoren alle
> Vektoren mit der Form [mm]\vektor{ w \\ w \\ w}[/mm] wobei w  [mm]\not=[/mm]
> 0.
>  
> Zumindest für den Fall [mm]K=\IR[/mm] sollte das doch stimmen, oder
> ?

Ja, in diesem Fall bist Du fertig.

FRED

>  
> Liebe Grüße
>  
> Manu271


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]