matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte mit Störung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte mit Störung
Eigenwerte mit Störung < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte mit Störung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Fr 27.04.2012
Autor: Skorpinus

Aufgabe
Es sei $A$ eine Matrix mit Eigenwerten mit negativen Realteilen. Betrachte die gestörte Matrix $A+O(e)$. Zeige, für kleine $e [mm] \in \mathbb{R}$ [/mm] hat die gestörte Matrix auch nur negative Realteile.


Hallo zusammen,

obrige Aufgaben bzw. Frage ergibt sich im Rahmen meiner Diplomarbeit über Dynamische Systeme. Ich habe eine Taylorentwicklung nach einem Parameter e (reelle Zahl), die nach Umformungen folgende Form ergibt
$Id+ [mm] \epsilon\cdot (D_\epsilon D_x P(\xi_0,0)+O(\epsilon))$ [/mm]
Die Beträge der Eigenwerte dieses Terms müssen kleiner 1 sein, also müssen die Eigenwerte [mm] $D_\epsilon D_x P(\xi_0,0)+O(\epsilon)$ [/mm] negative Realteile haben. Ich hoffe, dass negative Realteile von den Eigenwerten von [mm] $D_\epsilon D_x P(\xi_0,0)$ [/mm] ausreichen, solange e nicht zu groß wird, konnte aber bisher keinen Beweis dazu finden.

Leider kenne ich mich in dieser Thematik nicht so genau aus. Zu dem Themenbereich habe ich bisher nur in Büchern der Numerik etwas gefunden, das mir aber bisher nicht weitergeholfen hat. Jede Lösung, Lösungshinweis oder Verweis, wo ich nachschauen könnte ist willkommen.

        
Bezug
Eigenwerte mit Störung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Fr 27.04.2012
Autor: rainerS

Hallo!

> Es sei [mm]A[/mm] eine Matrix mit Eigenwerten mit negativen
> Realteilen. Betrachte die gestörte Matrix [mm]A+O(e)[/mm]. Zeige,
> für kleine [mm]e \in \mathbb{R}[/mm] hat die gestörte Matrix auch
> nur negative Realteile.
>  
> Hallo zusammen,
>  
> obrige Aufgaben bzw. Frage ergibt sich im Rahmen meiner
> Diplomarbeit über Dynamische Systeme. Ich habe eine
> Taylorentwicklung nach einem Parameter e (reelle Zahl), die
> nach Umformungen folgende Form ergibt
>  [mm]Id+ \epsilon\cdot (D_\epsilon D_x P(\xi_0,0)+O(\epsilon))[/mm]
>  
> Die Beträge der Eigenwerte dieses Terms müssen kleiner 1
> sein, also müssen die Eigenwerte [mm]D_\epsilon D_x P(\xi_0,0)+O(\epsilon)[/mm]
> negative Realteile haben. Ich hoffe, dass negative
> Realteile von den Eigenwerten von [mm]D_\epsilon D_x P(\xi_0,0)[/mm]
> ausreichen, solange e nicht zu groß wird, konnte aber
> bisher keinen Beweis dazu finden.
>
> Leider kenne ich mich in dieser Thematik nicht so genau
> aus. Zu dem Themenbereich habe ich bisher nur in Büchern
> der Numerik etwas gefunden, das mir aber bisher nicht
> weitergeholfen hat. Jede Lösung, Lösungshinweis oder
> Verweis, wo ich nachschauen könnte ist willkommen.

Warum haben dir die Lehrbücher der Numerik nicht weitergeholfen?

Stichwort: Satz von Bauer-Fike.

  Viele Grüße
    Rainer

Bezug
                
Bezug
Eigenwerte mit Störung: Ergänzung
Status: (Frage) überfällig Status 
Datum: 18:44 Fr 27.04.2012
Autor: Skorpinus

Oh, jetzt wo du mich darauf hinweist, sehe ich, dass er mir tatsächlich weiterhelfen würde. Ich glaube, ich habe die Aussage des Satzes nur nicht sorgfältig genug gelesen.

Aber: Der Satz von Bauer-Fike setzt eine diagonalisierbare Matrix voraus. Im Allgemeinen wird mein A aber nicht diagonalisierbar sein.

Nachtrag:
Für folgende nicht diagonalisierbare Matrix
[mm] \pmat{ 1 & 0 \\ 1 & 1 } [/mm]

und folgende gestörte Matrix

[mm] \pmat{ 1 & e \\ 1 & 1 } [/mm]

hat man eine Differenz von den Eigenwerten von [mm] $\Delta \lambda [/mm] = [mm] \sqrt{e}$. [/mm]

Das wäre für die Aufgabenstellung aber auch kein Problem, da die Differenz immer noch eine stetige Funktion ist, wenn auch nicht in 0 differenzierbar. Ich bräuchte also ein allgemeineres Resultat für Matrizen, die mir die stetige Abhängigkeit von Störungen gibt...

Bezug
                        
Bezug
Eigenwerte mit Störung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 01.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]