matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenEigenwerte Streckspiegelung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Eigenwerte Streckspiegelung
Eigenwerte Streckspiegelung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte Streckspiegelung: Idee
Status: (Frage) beantwortet Status 
Datum: 21:44 Do 19.01.2012
Autor: Mathehasser

Aufgabe
Wir betrachten eine affine Abbildung des [mm] \IR^2. [/mm] Bei dieser soll es sich um  eine Streckspiegelung um den Faktor 2 orthogonal zur Geraden y=2x handeln. Bestimmen Sie die zugehörigen Eigenwerte und Eigenvektoren.

Huhu...
komme bei folgender Aufgabe einfach zu keinem Anfang :(
wäre toll wenn ihr mir helfen könntet...

Wir betrachten eine affine Abbildung des [mm] \IR^2. [/mm] Bei dieser soll es sich um  eine Streckspiegelung um den Faktor 2 orthogonal zur Geraden y=2x handeln. Bestimmen Sie die zugehörigen Eigenwerte und Eigenvektoren.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwerte Streckspiegelung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:06 Fr 20.01.2012
Autor: Walde

hi Mathehasser,

also wenn man überhaupt keine Idee hat, stellt man einfach mal die Abbildungsmatrix auf. Wie man das macht? (Eine Zeichnung hilft evtl.)
1.Überlege dir die Geradengleichung von der Spiegelachse g:y=2x in Vektorform.
2. Nimm dir einen beliebigen Punkt P (x|y) und berechne, wo er durch die Spiegelung landen muß. Denk zunächst an eine normale Achsenspiegelung, (d.h. du "gehst" von P aus, senkrecht auf g zu), aber beachte den Streckfaktor 2, wie weit muß man also von P aus "gehen", bis man beim Bildpunkt P' landet? Bereche die Koordinaten von P' (alles in Abhängigkeit der Koordinaten von P natürlich.)

Wenn du die Abb.matrix hast, berechne die EWe und EVen.

Man kann aber auch durch überlegen auf die EV und zugehörigen EW kommen. Was  bedeutet $ [mm] Ax=\lambda [/mm] x $ anschaulich und was heißt das bei dieser Spielgelung? Ein EV einer Abb. bleibt ja durch diese in seiner Lage unverändert. Seine Länge und Richtung können sich ändern (das macht der EW). Auf welche Arten von Vektoren trifft dies bei einer Achsenspiegelung zu? Und um welchen Faktor ändert sich die Länge (auch Richtung beachten) des entsprechenden Vektors gegebenfalls?

LG walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]