matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte/Matr. potenzieren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte/Matr. potenzieren
Eigenwerte/Matr. potenzieren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte/Matr. potenzieren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:58 So 23.01.2011
Autor: DrNetwork

Aufgabe
T [mm] \in \IR^{nxn} [/mm]

a) Sei [mm] \lambda [/mm] ein Eigenwert der Matrix T, dann ist [mm] \lambda^j [/mm] für j [mm] \in \IN [/mm] ein Eigenwert der Matrix [mm] T^j. [/mm]

b) Für den Spektralradius der Matrix T, definiert durch ρ(T) := [mm] max_{1\le i \le n} [/mm] || [mm] \lambda_j [/mm] || mit [mm] \lambda_j [/mm] Eigenwerte von T, gilt:

p(T) [mm] \le \limes_{j\rightarrow\infty} ||T^j||^{1/j} [/mm]

Hi,

bei der a)

da dacht ich an die Diagonalisierbarkeit:

[mm]D = T^{-1}AT[/mm]
[mm] \Rightarrow D^k = T^{-1}A^kT[/mm]

Würde das reichen?

        
Bezug
Eigenwerte/Matr. potenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 So 23.01.2011
Autor: Teufel

Hi!

Du kannst nicht davon ausgehen, dass die Matrix diagonalisierbar ist!
Mach das lieber mal so:
Sei [mm] \lambda [/mm] Eigenwert von T zum Eigenvektor v, d.h. [mm] $Tv=\lambda [/mm] v$.

Nun schau mal was passiert, wenn man $T^jv$ ausrechnet.

Bezug
                
Bezug
Eigenwerte/Matr. potenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 So 23.01.2011
Autor: DrNetwork

> Hi!
>  
> Du kannst nicht davon ausgehen, dass die Matrix
> diagonalisierbar ist!

Hmm.. ja das dacht ich mir schon.

>  Mach das lieber mal so:
>  Sei [mm]\lambda[/mm] Eigenwert von T zum Eigenvektor v, d.h.
> [mm]Tv=\lambda v[/mm].
>  
> Nun schau mal was passiert, wenn man [mm]T^jv[/mm] ausrechnet.

Wie kann ich das allgemeingültig machen?


Bezug
                        
Bezug
Eigenwerte/Matr. potenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 So 23.01.2011
Autor: Teufel

Hi!

So, wie ich es geschrieben habe. Wenn v Eigenvektor von T zum Eigenwert [mm] \lambda [/mm] ist, dann schau dir mal [mm] $T^j*v$ [/mm] an.

Bezug
                                
Bezug
Eigenwerte/Matr. potenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 So 23.01.2011
Autor: DrNetwork


> Hi!
>  
> So, wie ich es geschrieben habe. Wenn v Eigenvektor von T
> zum Eigenwert [mm]\lambda[/mm] ist, dann schau dir mal [mm]T^j*v[/mm] an.

Entschuldigung aber da stehe ich auf dem Schlau. Wie soll ich das machen also:

[mm]Tv = \lambda v[/mm]
[mm](T*T)v = (\lambda*\lambda)v[/mm]

Ändern sich die Eigenvektoren nicht?

Bezug
                                        
Bezug
Eigenwerte/Matr. potenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:01 Mo 24.01.2011
Autor: Teufel

In dem Fall ist v auch ein Eigenvektor der Potenzmatrix! Nehmen wir mal j=2.

Gegeben hast du ja, dass [mm] $Tv=\lambda [/mm] v$ ist.

Dann ist [mm] $T^2*v=(T*T)*v=T*(T*v)=T*(\lambda*v)=\lambda*(T*v)=\lambda^2*v. [/mm]
Also ist v Eigenvektor von [mm] T^2 [/mm] zum Eigenwert [mm] \lambda^2. [/mm]

Bezug
        
Bezug
Eigenwerte/Matr. potenzieren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Di 25.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]