matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenEigenwerte Endomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Eigenwerte Endomorphismus
Eigenwerte Endomorphismus < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte Endomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:22 Mi 16.01.2008
Autor: daN-R-G

Aufgabe
Es seien $f, g$ Endomorphismen des n-dimensionalen K-Vektorraums V mit [mm] $f^2 [/mm] = f$ und [mm] $g^2 [/mm] = [mm] id_V$. [/mm]

a) Bestimme die Eigenwerte von $f$ bzw. $g$. (Tipp: [mm] g^2 [/mm] - 1 = (g+1)(g-1), mit [mm] 1=id_V) [/mm]
b) V besitzt eine Basis von Eigenvektoren von f. Im Fall char(K) [mm] \neq [/mm] 2 gilt gleiches für g.

Hi! Also ich habe noch diese Aufgabe, wo ich nicht ganz weiter weiß.

Zu a) Das ganze würde ich nun ungefähr so angehen:

$f(f(x) = [mm] f(\lambda [/mm] x) = [mm] \lambda^2 [/mm] x = f(x) = [mm] \lambda [/mm] x$
[mm] \Leftrightarrow \lambda^2 [/mm] = [mm] \lambda \Leftrightarrow \lambda [/mm] = 1 oder [mm] \lambda [/mm] = 0

Ich weiß jetzt nicht, wie ich den Tipp genau anwenden sollte. Ich würde es folgendermaßen lösen:
g(x) = [mm] \lambda [/mm] x
[mm] \Leftrightarrow [/mm] g(g(x) = [mm] g(\lambda [/mm] x) = [mm] \lambda^2 [/mm] x = [mm] id_V [/mm] = x
also [mm] \lambda [/mm] = 1 oder [mm] \lambda [/mm] = -1

Ich denke, dass des zu a) ausreicht. Bei b) Weiss ich jetzt gerade aber leider garnicht mehr weiter. Könnte mir da wohl jemand unter die Arme greifen?

Wie kann ich denn zeigen, dass es eine Basis von f aus Eigenvektoren gibt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwerte Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Do 17.01.2008
Autor: angela.h.b.


> Zu a) Das ganze würde ich nun ungefähr so angehen:
>  
> [mm]f(f(x) = f(\lambda x) = \lambda^2 x = f(x) = \lambda x[/mm]
>  
> [mm]\Leftrightarrow \lambda^2[/mm] = [mm]\lambda \Leftrightarrow \lambda[/mm]
> = 1 oder [mm]\lambda[/mm] = 0
>  
> Ich weiß jetzt nicht, wie ich den Tipp genau anwenden
> sollte. Ich würde es folgendermaßen lösen:
> g(x) = [mm]\lambda[/mm] x
>  [mm]\Leftrightarrow[/mm] g(g(x) = [mm]g(\lambda[/mm] x) = [mm]\lambda^2[/mm] x = [mm]id_V[/mm]
> = x
>  also [mm]\lambda[/mm] = 1 oder [mm]\lambda[/mm] = -1

Hallo,

für die Reinschrift würdest Du ja zunächst schreiben: sei [mm] \lambda [/mm] ein Eigenwert und x ein Eigenvektor.

Es ist für die Schlüsse nämlich wesentlich, daß der Vektor x nicht der Nullvektor ist.

Da wir nicht in [mm] \IR [/mm] sind, sondern in einem beliebigen Körper, würde ich die Schlüsse jeweils etwas ausführlicher ziehen, also

-   [mm] \lambda^2[/mm] [/mm] = [mm] \lambda [/mm]   ==> [mm] \lambda (\lambda [/mm] - 1)=0 ==> [mm] \lambda=0 [/mm] oder [mm] \lambda [/mm] =1 (wegen der Nullteilerfreiheit v. Körpern).

Für den Eigenwert v. g entsprechend.  (Den Tip brauchst Du nicht mehr.)


Für b) mußt Du nun die Eigenvektoren ermitteln und zeigen, daß sie linear unabhängig sind.

Ein Tip zu f: jeder Vektor =0 aus dem Bild von f ist ein Eigenvektor.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]