matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenEigenwerte/-vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Abbildungen und Matrizen" - Eigenwerte/-vektoren
Eigenwerte/-vektoren < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte/-vektoren: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 Di 26.01.2010
Autor: stffn

Aufgabe
Zeigen Sie, dass die Abbildung P einen Eigenwert [mm] \lambda_{1}=1 [/mm] hat und dass es einen zugehörigen Eigenvektor [mm] \vec{p} [/mm] gibt, für den gilt:
[mm] p_{1}+p_{2}+p_{3}=1 [/mm] mit [mm] p_{1}>0, p_{2}>0, p_{3}>0 [/mm]
Berechnen Sie den zweiten Eigenwert und zwei linear unabhängige Eigenvektoren [mm] \vec{v} [/mm] und [mm] \vec{w} [/mm] zu diesem.
Diagonalisieren Sie die Matrix P.

[mm] P:=\pmat{ \bruch{7}{9} & \bruch{1}{9} & \bruch{1}{9} \\ \bruch{1}{9} & \bruch{7}{9} & \bruch{1}{9} \\ \bruch{1}{9} & \bruch{1}{9} & \bruch{7}{9}} [/mm]

Hallo!
Also vorweg gesagt, eigentlich hatte ich nie Probleme mit der Berechnung von Eigenwerten/-vektoren.
Umso verzweifelter bin ich, dass ich nicht auf den Eigenwert [mm] \lambda_{1}=1 [/mm] komme. Wenn ich det(P) ausrechne komme ich auf folgendes Ergebnis für das charakteristische Polynom:
[mm] p(\lambda)=(\bruch{7}{9}-\lambda)^3-\bruch{3}{81}*\lambda-\bruch{19}{729} [/mm]

Rechenfehler oder Denkfehler?
Vielen Dank für die Hilfe!

        
Bezug
Eigenwerte/-vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 Di 26.01.2010
Autor: stffn

Ich meinte natürlich, dass ich [mm] det(P-\lambda*I) [/mm] für das char. pol. ausgerechnet habe.

Bezug
                
Bezug
Eigenwerte/-vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Di 26.01.2010
Autor: stffn

Ok, ich habe einen Vorzeichenfehler gefunden.
Das Polynom heißt:

[mm] p(\lambda)=(\bruch{7}{9}-\lambda)^3 [/mm] + [mm] \bruch{3}{81}*\lambda-\bruch{19}{729} [/mm]

Damit stimmt das mit dem EW [mm] \lambda_{1}=1 [/mm] auch.
Ein dazu gehöriger EV ist dann
[mm] \vec{p}=\vektor{ \bruch{1}{2} \\ \bruch{2}{5} \\ \bruch{3}{5}} [/mm]
Wenn ich jetzt die Bedingung [mm] p_{1}+p_{2}+p_{3}=1 [/mm] erfüllen möchte, komme ich auf den Vektor

[mm] \vec{p}=\vektor{ \bruch{1}{3} \\ \bruch{4}{15} \\ \bruch{6}{15}} [/mm]

Ist das richtig bis dahin?

Bezug
                        
Bezug
Eigenwerte/-vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Di 26.01.2010
Autor: fred97


> Ok, ich habe einen Vorzeichenfehler gefunden.
>  Das Polynom heißt:
>  
> [mm]p(\lambda)=(\bruch{7}{9}-\lambda)^3[/mm] +
> [mm]\bruch{3}{81}*\lambda-\bruch{19}{729}[/mm]
>  
> Damit stimmt das mit dem EW [mm]\lambda_{1}=1[/mm] auch.
>  Ein dazu gehöriger EV ist dann
> [mm]\vec{p}=\vektor{ \bruch{1}{2} \\ \bruch{2}{5} \\ \bruch{3}{5}}[/mm]
>  
> Wenn ich jetzt die Bedingung [mm]p_{1}+p_{2}+p_{3}=1[/mm] erfüllen
> möchte, komme ich auf den Vektor
>  
> [mm]\vec{p}=\vektor{ \bruch{1}{3} \\ \bruch{4}{15} \\ \bruch{6}{15}}[/mm]
>  
> Ist das richtig bis dahin?



Alles richtig

FRED

Bezug
                                
Bezug
Eigenwerte/-vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:42 Di 26.01.2010
Autor: stffn

Sehr schön, so schnell kanns gehen. danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]