matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte
Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Mo 12.07.2010
Autor: flare

Guten Tag,

nur ne kleine Frage :)

Wenn ich eine Matrix durch Zeilenumformungen veränder, ändere ich den Eigenwert, das doch korrekt ?

Aber wenn ich erst die Determinante verändere, sollte das keine Änderung mitsichziehen oder? Also wenn ich vielfache Zeilen/Spalten addiere. Eigentlich ist das ja gerade eine Eigenschaft der Determinante. Wollte nur nochmal sicher gehen

Vielen Dank

        
Bezug
Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 05:11 Di 13.07.2010
Autor: angela.h.b.


> Wenn ich eine Matrix durch Zeilenumformungen veränder,
> ändere ich den Eigenwert, das doch korrekt ?

Hallo,

ja.

>  
> Aber wenn ich erst die Determinante verändere, sollte das
> keine Änderung mitsichziehen oder? Also wenn ich vielfache
> Zeilen/Spalten addiere. Eigentlich ist das ja gerade eine
> Eigenschaft der Determinante. Wollte nur nochmal sicher
> gehen

Hallo,

ja.

>  
> Aber wenn ich erst die Determinante verändere, sollte das
> keine Änderung mitsichziehen oder? Also wenn ich vielfache
> Zeilen/Spalten addiere. Eigentlich ist das ja gerade eine
> Eigenschaft der Determinante. Wollte nur nochmal sicher
> gehen


Hmm. Wenn ich nur wüßte, was Du meinst.
Manchmal ist statt vieler Worte ein kleines Beispiel wirklich besser.

Vielleicht meinst Du dies:
wenn Du Dich für die Eigenwerte von A interessierst, berechnest Du ja die Nullstellen von  det(A-xE).
Um det(A-xE) zu berechnen, kannst Du Zeilen- und Spaltenumformungen vornehmen. Das vereinfacht oft die Berechnung.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]