Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:46 So 17.04.2005 | Autor: | wee |
Es gilt folgende Aufgabe zu lösen:
Seien f und g Endomorphismen des endlichdimensionalen K-Vektorraums V. Es gelte f [mm] \circ [/mm] f = f und g [mm] \circ [/mm] g = [mm] id_{v}
[/mm]
a) Bestimme die Eigenwerte von f und g
Meine Idee: sei dim(V)=n, wähle eine Basis bzgl. welche die darstellende matrix A hat
f [mm] \circ [/mm] f = f [mm] \Rightarrow [/mm] A*A=A [mm] \Rightarrow [/mm] A muss Diagonalgestallt haben mit Einsen auf der Hauptdiagonalen
[mm] \Rightarrow [/mm] das charakteristische Polynom = [mm] (1-T)^n \Rightarrow [/mm] 1 ist Nullstelle mit Multiplizität n
aus einen Lemma [mm] \Rightarrow [/mm] da das charakteristische Polynom unabhängig von der Wähl der Basis ist folgt 1 ist der einzige Eigenwert von f
Für g würde ich genauso argumentieren, hätte also das gleiche Ergebnis. Das zeigt mir, dass ich einen Fehler gemacht habe, den ich aber nicht erkenne. Kann mir also jemand helfen ?
Es würde reichen, wenn man mir nur einen Lösungsweg für eine Abbildung zeigt
Ich habe diese Frage in keinen anderen Internetforum gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:24 So 17.04.2005 | Autor: | Nam |
Hi,
für f würde ich folgendes machen.
Sei [mm]\lambda[/mm] ein Eigenwert zum einem Eigenvektor [mm]x \not= 0[/mm]. Dann gilt:
[mm]\lambda x = f(x) = f(f(x)) = f(\lambda x) = \lambda f(x) = \lambda^2 x[/mm]
Also: [mm]\lambda^2 = \lambda \Rightarrow \lambda = 1[/mm]
Bei g sind die Eigenwerte nicht nur 1, sie können auch -1 sein!
Also wieder das selbe Spiel, [mm]\lambda[/mm] ein Eigenwert zu x:
[mm]\lambda x = g(x) = g(g(g(x))) = g(g(\lambda x)) = g(\lambda^2 x) = \lambda^3 x[/mm]
[mm]\lambda^3 = \lambda \Rightarrow |\lambda| = 1[/mm]
Ohne Gewähr allerdings ;)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:58 So 17.04.2005 | Autor: | Peter_Pein |
Hallo,
...
> f [mm]\circ[/mm] f = f [mm]\Rightarrow[/mm] A*A=A [mm]\Rightarrow[/mm] A muss
> Diagonalgestallt haben mit Einsen auf der Hauptdiagonalen
das folgt jedenfalls nicht aus $A*A=A$:
Seien $x,y [mm] \in \IR, [/mm] y [mm] \not= [/mm] 0$ und $A:= [mm] \pmat{ x & y \\ \bruch{x(1-x)}{y} & 1-x }$, [/mm] dann ist $A*A=A$, aber $A [mm] \not= \pmat{ 1 & 0 \\ 0 & 1 }$.
[/mm]
Grüße,
Peter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:05 Di 19.04.2005 | Autor: | BAGZZlash |
Richtig! Solche Matritzen nennt man idempotent, d.h. XX=X. Richtig ist, daß die Einheitsmatrix (die Diagonalmatrix mit lauter Einsen auf der Hauptdiagonalen) idempotent ist (d.h. I*I=I). Darum geht es auch in Deiner Aufgabe, denke ich mal. Idempotente Matritzen lassen sich konstruieren mit [mm] I-X( X^{T}X)^{-1}X^{T} [/mm]. Lies dazu auch http://de.wikipedia.org/wiki/Idempotenz
|
|
|
|