matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenEigenwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Eigenwerte
Eigenwerte < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte: Verständnis
Status: (Frage) beantwortet Status 
Datum: 02:55 Mo 10.03.2008
Autor: Salo

Hallo!
Ich schreibe hier weil mich Mupad vorhin ein bisschen verwirrt hat..
Es wollte mir zu einer Matrix, die vollen Rang hat keine Eigenwerte ausspucken.
Ich bin davon ausgegangen, dass jede Matrix Eigenwerte und Eigenvektoren hat. Stimmt das?
Und nochwas: Darf ich bevor ich das charakteristische Polynom aufstelle Gauss mit Zeilenmultiplikation anwenden (dann hätte ich nämlich auf der Hauptdiagonalen schon meine Nullstellen stehen quasi)
Vielen Dank schon mal!

Gruß
Salo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 03:25 Mo 10.03.2008
Autor: Zneques

Hallo,

Ein Eigenvektor mit Eigenwert existiert nur dann, wenn es einen Vektor gibt für den
[mm] Av=\lambda*v [/mm] gilt. D.h. er zeigt nach dem Abbilden noch in die gleiche Richtung.
Bei Rotationen werden aber u.U. alle Vektoren verdreht.
z.B. [mm] A=\pmat{0&&1\\-1&&0} [/mm]

> Darf ich bevor ich das charakteristische Polynom aufstelle Gauss mit Zeilenmultiplikation anwenden ?

Durch den Gauß-Alg. werden die Eigenwerte verändert.
Z.B. [mm] A=\pmat{4&&0\\0&&1} \to\quad A=\pmat{2&&0\\0&&1} [/mm]
Man könnte die Schritte zwar als Basistransformationen auffassen, aber das dürfte in den meisten Fällen die Rechnung komplizierter machen.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]