matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte
Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 Mo 06.02.2006
Autor: Molch

Aufgabe
Bestimmung der Eigentwerte von CA

C= [mm] \pmat{ 4 & 1 \\ 2 & 1 \\ 2 & 1 } [/mm]
A= [mm] \pmat{ 1 & 1 & 1 \\ -2 & 2 & -1 } [/mm]

Hallo!

Die Berechnung der Eigenwerte mittels des charakteristischen Polynoms liefert mir die Eigenwerte

[mm] \lambda_{0}=0 [/mm]
[mm] \lambda_{1}=2 [/mm]
[mm] \lambda_{2}=5 [/mm]

Nun ist es doch auch so, dass bei einer Dreiecksmatrix, die Hauptdiagonalelemente die Eigenwerte sind. Wenn ich nun jedoch einen Eliminationsschritt durchführe um die Matrix in solch eine Form zu bringen und zu folgender Matrix gelange

CA= [mm] \pmat{ 2 & 6 & 3 \\ 0 & 4 & 1 \\ 0 & 0 & 0 } [/mm]

wären doch die Eigenwerte als 2, 4 und 0 abzulesen.
Verändert etwa ein Eliminationsschritt die Eigenwerte einer Matrix?

Gruß, Molch

        
Bezug
Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Mo 06.02.2006
Autor: banachella

Hallo!

In der Tat verändert ein Eliminationsschritt u.U. die Eigenwerte der Matrix. Das Abziehen der 2. Zeile von der 3. entspricht der Multiplikation mit einer Elementar-Matrix von links:
[mm] $\pmat{1&0&0\\0&1&0\\0&-1&1}*\pmat{2&6&3\\0&4&1\\0&4&1}=\pmat{2&6&3\\0&4&1\\0&0&0}$. [/mm]
Damit die Eigenwerte invariant bleiben, musst du aber das Inverse der Elementar-Matrix von recht dranmultiplizieren. Dieses entspricht dem Addieren der 3. Spalte auf die 2.:
[mm] $\pmat{1&0&0\\0&1&0\\0&-1&1}*\pmat{2&6&3\\0&4&1\\0&4&1}*\pmat{1&0&0\\0&1&0\\0&1&1}= \pmat{1&0&0\\0&1&0\\0&-1&1}*\pmat{2&9&3\\0&5&1\\0&5&1}=\pmat{2&9&3\\0&5&1\\0&0&0}$. [/mm]
Jetzt klappt's auch mit den Eigenwerten...

Gruß, banachella

Bezug
                
Bezug
Eigenwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:57 Mo 06.02.2006
Autor: Molch

Danke für die Hilfe.

Dieser Umstand war mir noch nicht bekannt!

Gruß, Molch

Bezug
                
Bezug
Eigenwerte: Jordansche Normalform
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:02 Mo 06.02.2006
Autor: kampfsocke

Hallo,

soweit ich weiß nennt man die Matrix wo man die Eigentwerte in der Diagonalen ablesen kann auch die   Jordansche Normalform . Es ist alles außerhalb der Diagonalen Null, und in der Diagonalen selber stehen nur die Eigenwerte.

Und die Jordanmatrik kann man ausrechnen, wenn man an die Ausgangsmatrix von links das Inverse der Transformationsmatrix, und von rechts die Transformationsmatrix ran multiplizierst.

Wenn du dafür nochmal ein Beispiel willst (für Interessierte) dann mach zwei mal "piep".

Viele Grüße,
//Sara

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]