matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwerte- und vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte- und vektoren
Eigenwerte- und vektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte- und vektoren: Erklärung
Status: (Frage) beantwortet Status 
Datum: 18:55 Sa 13.06.2015
Autor: Sunnybow1

Aufgabe
Bestimmen Sie die Eigenwerte- und vektoren der Leslie-Matrix.
Die Matrix lautet L= [mm] \pmat{ 0 & 0,4 & 0,8 & 0,2 \\ 0,9 & 0 & 0 & 0 \\ 0 & 0,7 & 0 & 0 \\ 0 & 0 & 0,4 & 0 } [/mm]
Der Anfangsvektor ist [mm] \vektor{350 \\ 204 \\ 166 \\ 50} [/mm]

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de//forum/Eigenwerte-und-vektoren-einer-Leslie-Matrix

Wie berechne ich denn die Eigenwerte und Eigenvektoren einer Leslie-Matrix?

        
Bezug
Eigenwerte- und vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 05:42 So 14.06.2015
Autor: angela.h.b.


> Bestimmen Sie die Eigenwerte- und vektoren der
> Leslie-Matrix.
> Die Matrix lautet L= [mm]\pmat{ 0 & 0,4 & 0,8 & 0,2 \\ 0,9 & 0 & 0 & 0 \\ 0 & 0,7 & 0 & 0 \\ 0 & 0 & 0,4 & 0 }[/mm]
>  
> Der Anfangsvektor ist [mm]\vektor{350 \\ 204 \\ 166 \\ 50}[/mm]
>  Ich

> Wie berechne ich denn die Eigenwerte und Eigenvektoren
> einer Leslie-Matrix?

Hallo,

[willkommenmr].

Man macht das so, wie bei jeder anderen Matrix auch:

die Eigenwerte [mm] \lambda [/mm] sind die Nullstellen des charakteristischen Polynoms,
also die Nullstellen von [mm] \chi (\lambda)=det(L-\lambda [/mm] E),

hier: von [mm] \chi (\lambda)=det\pmat{ -\lambda & 0,4 & 0,8 & 0,2 \\ 0,9 & -\lambda & 0 & 0 \\ 0 & 0,7 & -\lambda & 0 \\ 0 & 0 & 0,4 & -\lambda} [/mm]

Diese Determinante mußt Du nun erstmal berechnen und dann die Nullstellen bestimmen.

Die zu [mm] \lambda_i [/mm] gehörenden Eigenvektoren findest Du anschließend, indem Du [mm] Kern(L-\lambda_i [/mm] E) bestimmst.

Leg' mal los.
Falls es Probleme gibt, zeig' was Du tust,
damit wir Dir weiterhelfen können.

LG Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]