matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert von Endomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenwert von Endomorphismus
Eigenwert von Endomorphismus < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert von Endomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Mi 23.01.2008
Autor: Mudi

Aufgabe
Die Ableitung von unendlich differenzierbaren Funktionen,
[mm]D: C^\infty (\IR) \rightarrow C^\infty (\IR), f \rightarrow Df \equiv f'[/mm]
ist ein linearer Endomorphismus des (unendlich-dimensionalen) reellen Vektorraums [mm]C^\infty (\IR)[/mm].
Bestimmen sie dir Eigenwerte und Eigenvektoren von D.

Meine Frage hierzu ist eigentlich nur: Wie geh ich da ran?
Ich kann Eigenwerte und Eigenvektoren von Matrizen berechnen, das ist kein Problem.
Ich könnte mir vorstellen dass es evtl etwas mit der Darstellungsmatrix zu tun haben könnte, nur wie komm ich auf die?
Danke schonmal für eure hilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwert von Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 08:05 Do 24.01.2008
Autor: angela.h.b.

Hallo,

[willkommenmr].

Mit der Darstellungsmatrix geht das nicht so gut, denn es ist ja der betrachtete Vektorraum nicht endlichdimensional.

Ich würde hier ganz direkt über die Definition der Eigenwertes/-vektors drangehen:

Sei f ein Eigenvektor und [mm] \lambda [/mm] ein Eigenwert.

Dann ist [mm] D(f)=\lambda [/mm] f, also [mm] f'=\lambda [/mm] f, und dieses Problem ist eines der Analysis, welches dort vermutlich gelöst wurde.

Gruß v. Angela

Bezug
                
Bezug
Eigenwert von Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:38 Do 24.01.2008
Autor: Mudi

Ja aber is dann nich ganz [mm] \IR [/mm] Eigenwert von D?
Angenommen ich hätte [mm] f:=e^{\lambda*x}. [/mm] Davon wäre doch die Ableitung [mm] f'=\lambda*e^{\lambda*x}=\lambda*f [/mm] was für alle [mm] \lambda \in \IR [/mm] gilt. Eigenvektor dazu ist dann [mm] e^{\lambda*x} [/mm] wenn ich mich nicht irre oder?

Bezug
                        
Bezug
Eigenwert von Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:59 Do 24.01.2008
Autor: angela.h.b.


> Ja aber is dann nich ganz [mm]\IR[/mm] Eigenwert von D?

Hallo,

ja, so ist das.

>  Angenommen ich hätte [mm]f:=e^{\lambda*x}.[/mm] Davon wäre doch die
> Ableitung [mm]f'=\lambda*e^{\lambda*x}=\lambda*f[/mm] was für alle
> [mm]\lambda \in \IR[/mm] gilt. Eigenvektor dazu ist dann
> [mm]e^{\lambda*x}[/mm] wenn ich mich nicht irre oder?

Ein Eigenvektor zu [mm] \lambda [/mm] ist f mit [mm] f(x):=e^{\lambda x} [/mm] , aber alle Vielfachen rf natürlich ebenso. [mm] (r\not=0). [/mm]

Gruß v. Angela


Bezug
                                
Bezug
Eigenwert von Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 Do 24.01.2008
Autor: Mudi

Alles klar.
Vielen Dank für deine Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]