matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEigenwert und Eigenraum komplx
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Eigenwert und Eigenraum komplx
Eigenwert und Eigenraum komplx < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert und Eigenraum komplx: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Mo 17.08.2009
Autor: inseljohn

Aufgabe
Bestimmen Sie die komplexen Eigenwerte und Eigenräume der Matrix

[mm] \pmat{ 2 & -1 \\ 1 & 2 } [/mm]

Hallo,

hab da mal ne Frage.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
[mm] \pmat{ 2 & -1 \\ 1 & 2 } [/mm]

dafür bekomme ich die folgenden eigenwerte raus bzw. erstma das charak. polynom :  [mm] \lambda^2-4\lambda+5 [/mm]

Daraus folgen die Eigenwerte: 2+i und 2-i
Soweit müsste das eigentlich stimmen ;)

Jetzt möchte ich gerne die Eigenräume bestimmen. Doch da stehe ich irgendwie auf den Schlauch. Ich weiß, dass ich dazu erst den Kern berechnen muss. Also eigentlich nur n Gleichungssystem, welches so aussehen müsste...zum ersten Eigenwert

[mm] \vmat{ -i & -1 \\ 1 & -i } [/mm]

doch irgendwie bin ich dazu zu blöd :D Kann mir das mal jemand schritt für schritt zeigen? :P

dankeee...

gruß, inseljohn

        
Bezug
Eigenwert und Eigenraum komplx: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Mo 17.08.2009
Autor: angela.h.b.


> Bestimmen Sie die komplexen Eigenwerte und Eigenräume der
> Matrix
>  
> [mm]\pmat{ 2 & -1 \\ 1 & 2 }[/mm]
>  Hallo,
>  
> hab da mal ne Frage.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  [mm]\pmat{ 2 & -1 \\ 1 & 2 }[/mm]
>  
> dafür bekomme ich die folgenden eigenwerte raus bzw.
> erstma das charak. polynom :  [mm]\lambda^2-4\lambda+5[/mm]
>  
> Daraus folgen die Eigenwerte: 2+i und 2-i
>  Soweit müsste das eigentlich stimmen ;)
>  
> Jetzt möchte ich gerne die Eigenräume bestimmen. Doch da
> stehe ich irgendwie auf den Schlauch. Ich weiß, dass ich
> dazu erst den Kern berechnen muss. Also eigentlich nur n
> Gleichungssystem, welches so aussehen müsste...zum ersten
> Eigenwert
>  
> [mm]\vmat{ -i & -1 \\ 1 & -i }[/mm]

Hallo,

[willkommenmr].

Bis hierher ist's richtig.

Nun bring die matrix in Zeilenstufenform und lies wie gewohnt den Kern ab:

1.Zeile *i --> [mm] \vmat{ 1 & -i \\ 1 & -i } [/mm]

2.Zeile -1. Zeile --> [mm] \vmat{ 1 & -i \\ 0 & 0 } [/mm]

Also ist [mm] \vektor{i\\1} [/mm] eine Basis des Eigenraumes zu 2+i.

Gruß v. Angela

Bezug
                
Bezug
Eigenwert und Eigenraum komplx: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Mo 17.08.2009
Autor: inseljohn

Hey,

ja, danke! dieses ergebnis is richtig....
kannst du mir noch mal eben sagen ,warum du die 1. zeile  mal i genommen hast!? :)

sorry, aber ich seh das gerad echt nicht :P

Bezug
                        
Bezug
Eigenwert und Eigenraum komplx: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Mo 17.08.2009
Autor: MathePower

Hallo inseljohn,

> Hey,
>  
> ja, danke! dieses ergebnis is richtig....
>  kannst du mir noch mal eben sagen ,warum du die 1. zeile  
> mal i genommen hast!? :)


Um zu zeigen, daß die 2. Zeile ein Vielfaches der 1. Zeile ist.


>  
> sorry, aber ich seh das gerad echt nicht :P


Gruss
MathePower

Bezug
        
Bezug
Eigenwert und Eigenraum komplx: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Di 18.08.2009
Autor: inseljohn

Alles klar!
vielen dank dafür! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]