matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenEigenwert einer Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Eigenwert einer Matrix
Eigenwert einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Mo 08.08.2011
Autor: Haiza

Aufgabe
Bestimmen Sie den Eigenwert der Matrix:
[mm] $\pmat{ 1 & -1 \\ 0 & 2 }$ [/mm]


Hallo nochmal,
habe mir dazu einige Videos im Internet angeschaut und recherchiert, jedoch finde ich das ganze Verfahren etwas kompliziert. In unserem Lösungsbuch ist die Lösung ein Einzeiler, jedoch für mich nicht verständlich genug.
Ich weiß, dass die Formel wie folgt lautet:
$ [mm] det(A-\lambda [/mm] E)=0 $
Das müsste im Weiteren folgendes Bedeuten:
$ [mm] det(\pmat{ 1 & -1 \\ 0 & 2 }-\lambda [/mm] E)=0$
$ [mm] det(\pmat{ 1-\lambda & -1 \\ 0 & 2-\lambda })=0$ [/mm]
$ [mm] ((1-\lambda) \cdot (2-\lambda))=0 [/mm] $
Nun weiß ich jedoch nicht mehr weiter.

Habt ihr einen Tipp?

Gruß und Danke im Voraus!


        
Bezug
Eigenwert einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Mo 08.08.2011
Autor: M.Rex

Hallo

Für eine 2x2-Matrix
[mm] A=\begin{pmatrix}a_{11}&a_{12}\\ a_{21}&a_{22}\end{pmatrix} [/mm]

gilt:

[mm] det(A)=a_{11}a_{22}-a_{12}a_{21} [/mm]

Also in deinem Fall:

$ [mm] \det\left(\pmat{ 1-\lambda & -1 \\ 0 & 2-\lambda }\right)=0 [/mm] $
$ [mm] \Leftrightarrow (1-\lambda)(2-\lambda)-0=0 [/mm] $
$ [mm] \Leftrightarrow (1-\lambda)(2-\lambda)=0 [/mm] $

Diese Gleichung musst du nun nach [mm] \lambda [/mm] lösen.

Marius



Bezug
                
Bezug
Eigenwert einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 Mo 08.08.2011
Autor: Haiza

Achso, okay. Also:

$ [mm] 2-\lambda-2\lambda+\lambda^2=0 [/mm] $
$ [mm] \lambda^2-3\lambda+2=0 [/mm] $

Dann pq-Formel.

$ [mm] \lambda_1 [/mm] = 2 $  $  [mm] \lambda_2=1 [/mm] $

Das stimmt auch mit dem Lösungsbuch überein.

Stimmt alles oder?

Gruß und Danke :-)


Bezug
                        
Bezug
Eigenwert einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Mo 08.08.2011
Autor: fred97


> Achso, okay. Also:
>  
> [mm]2-\lambda-2\lambda+\lambda^2=0[/mm]
>  [mm]\lambda^2-3\lambda+2=0[/mm]
>  
> Dann pq-Formel.
>
> [mm]\lambda_1 = 2[/mm]  [mm]\lambda_2=1[/mm]
>  
> Das stimmt auch mit dem Lösungsbuch überein.
>  
> Stimmt alles oder?

Ja, aber brauchst Du für die Gleichung

         [mm] $(1-\lambda)(2-\lambda)=0$ [/mm]

wirklich die pq-Formel ..... ?

Wenn ich Dir die Gleichung

             [mm] (1-\lambda)(1+\lambda)(4-\lambda)(178+\lambda)=0 [/mm]

vorlege, was machst Du dann ?

Ein Produkt ist =0 , wenn ..... ???

FRED

>  
> Gruß und Danke :-)
>  


Bezug
                                
Bezug
Eigenwert einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Mo 08.08.2011
Autor: Haiza


> Ja, aber brauchst Du für die Gleichung
>  
> [mm](1-\lambda)(2-\lambda)=0[/mm]
>  
> wirklich die pq-Formel ..... ?
>  
> Wenn ich Dir die Gleichung
>  
> [mm](1-\lambda)(1+\lambda)(4-\lambda)(178+\lambda)=0[/mm]
>  
> vorlege, was machst Du dann ?
>
> Ein Produkt ist =0 , wenn ..... ???

Ähm...? Öh...? Also es gibt sicher noch andere Wege... Ist ja eigentlich nur eine Nullstellenberechnung...
Ich weiß aber leider nicht genau worauf du anspielen möchtest *schäm* :-(

Auserdem stellt sich mir noch die Frage, wie ich den Eigenvektor davon berechne?

Gruß


Bezug
                                        
Bezug
Eigenwert einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Mo 08.08.2011
Autor: M.Rex


> > Ja, aber brauchst Du für die Gleichung
>  >  
> > [mm](1-\lambda)(2-\lambda)=0[/mm]
>  >  
> > wirklich die pq-Formel ..... ?
>  >  
> > Wenn ich Dir die Gleichung
>  >  
> > [mm](1-\lambda)(1+\lambda)(4-\lambda)(178+\lambda)=0[/mm]
>  >  
> > vorlege, was machst Du dann ?
> >
> > Ein Produkt ist =0 , wenn ..... ???
>  
> Ähm...? Öh...? Also es gibt sicher noch andere Wege...
> Ist ja eigentlich nur eine Nullstellenberechnung...
>  Ich weiß aber leider nicht genau worauf du anspielen
> möchtest *schäm* :-(

Setz den Satz "Ein Produkt nimmt genau dann den Wert Null an, wenn einer der Faktoren..." mal fort.

>  
> Auserdem stellt sich mir noch die Frage, wie ich den
> Eigenvektor davon berechne?

Gibt es Vektoren, die folgende Bedingungen erfüllen?

$ [mm] \begin{pmatrix}1&-1\\0&2\end{pmatrix}\cdot\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}=2\cdot\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix} [/mm] $
(Eigenvektoren zu [mm] \lambda=2 [/mm] )


$ [mm] \begin{pmatrix}1&-1\\0&2\end{pmatrix}\cdot\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}=1\cdot\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix} [/mm] $
(Eigenvektoren zu [mm] \lambda=1 [/mm] )

>
> Gruß
>  

Marius


Bezug
                                                
Bezug
Eigenwert einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Mo 08.08.2011
Autor: Haiza


> Setz den Satz "Ein Produkt nimmt genau dann den Wert Null
> an, wenn einer der Faktoren..." mal fort.

...null ist. Aber ist einer der Faktoren 0 ? Weiß nicht so recht, wass ich mit dem Satz anfangen soll...

Gruß


Bezug
                                                        
Bezug
Eigenwert einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Mo 08.08.2011
Autor: schachuzipus

Hallo Haiza,


>
> > Setz den Satz "Ein Produkt nimmt genau dann den Wert Null
> > an, wenn einer der Faktoren..." mal fort.
>  
> ...null ist. Aber ist einer der Faktoren 0 ?

Du musst überlegen, für welche [mm]\lambda\in\IR[/mm]  denn [mm](1-\lambda)\cdot{}(2-\lambda)=0[/mm] ist!?

Der erste Faktor wird Null für [mm]\lambda=...[/mm], der zweite Faktor für [mm]\lambda=...[/mm]

Das sind deine Eigenwerte ...

> Weiß nicht so
> recht, wass ich mit dem Satz anfangen soll...

Na, direkt übertragen auf deine Gleichung [mm](1-\lambda)\cdot{}(2-\lambda)=0[/mm]

>  
> Gruß
>  

LG

schachuzipus


Bezug
                                                                
Bezug
Eigenwert einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:07 Mo 08.08.2011
Autor: Haiza


> Der erste Faktor wird Null für [mm]\lambda=...[/mm], der zweite
> Faktor für [mm]\lambda=...[/mm]

Ahhhh... also 1 und 2 . Stimmt macht Sinn.

Danke! Danke auch für deine Ergänzungsantwort mit dem Ablesen der Diagonalen. Danke.

Gruß


Bezug
                                                
Bezug
Eigenwert einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 Mo 08.08.2011
Autor: Haiza


> >  

> > Auserdem stellt sich mir noch die Frage, wie ich den
> > Eigenvektor davon berechne?
>
> Gibt es Vektoren, die folgende Bedingungen erfüllen?
>  
> [mm]\begin{pmatrix}1&-1\\0&2\end{pmatrix}\cdot\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}=2\cdot\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}[/mm]
>  (Eigenvektoren zu [mm]\lambda=2[/mm] )
>  
>
> [mm]\begin{pmatrix}1&-1\\0&2\end{pmatrix}\cdot\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}=1\cdot\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}[/mm]
>  (Eigenvektoren zu [mm]\lambda=1[/mm] )

So habe mich jetzt nochmal versucht damit auseinander zu setzen. Habe mir ein Mathevideo dazu angeschaut und kam auf folgenden Weg für die oben stehende Aufgabe und ihren Eigenvektoren.
Zu $ [mm] \lambda_1 [/mm] = 2 $:
$ (A + [mm] \lambda_1 \cdot [/mm] E) [mm] \cdot \overrightarrow{x} [/mm]  $
$ [mm] (\pmat{ 1 & -1 \\ 0 & 2 } [/mm] + 2 [mm] \cdot \pmat{ 1 & 0 \\ 0 & 1 })\overrightarrow{x} [/mm] $
$ [mm] 2x_1 [/mm] - [mm] x_2=0 [/mm] $
$          [mm] 4x_2=0 [/mm] $

Nun habe ich im Netz gesehen, dass jetzt ein Faktor für z.B. [mm] $x_2$ [/mm] zu wählen ist. Sagen wir ich nehme die 1. Dann ergibt die obere Gleichung:
$ [mm] 2x_1 [/mm] = 1 $
$ [mm] x_1 [/mm] = 0,5 $

Scheint mir nicht korrekt und deckt sich auch nicht mit den Lösungen aus dem Lösungsbuch.

Habt ihr einen Tipp?

Gruß und Danke!


Bezug
                                                        
Bezug
Eigenwert einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Mo 08.08.2011
Autor: M.Rex

Hallo


> > >  

> > > Auserdem stellt sich mir noch die Frage, wie ich den
> > > Eigenvektor davon berechne?
> >
> > Gibt es Vektoren, die folgende Bedingungen erfüllen?
>  >  
> >
> [mm]\begin{pmatrix}1&-1\\ 0&2\end{pmatrix}\cdot\begin{pmatrix}x_{1}\\ x_{2}\end{pmatrix}=2\cdot\begin{pmatrix}x_{1}\\ x_{2}\end{pmatrix}[/mm]
>  >  (Eigenvektoren zu [mm]\lambda=2[/mm] )
>  >  
> >
> >
> [mm]\begin{pmatrix}1&-1\\ 0&2\end{pmatrix}\cdot\begin{pmatrix}x_{1}\\ x_{2}\end{pmatrix}=1\cdot\begin{pmatrix}x_{1}\\ x_{2}\end{pmatrix}[/mm]
>  >  (Eigenvektoren zu [mm]\lambda=1[/mm] )
>  
> So habe mich jetzt nochmal versucht damit auseinander zu
> setzen. Habe mir ein Mathevideo dazu angeschaut und kam auf
> folgenden Weg für die oben stehende Aufgabe und ihren
> Eigenvektoren.
>  Zu [mm]\lambda_1 = 2 [/mm]:
>  [mm](A + \lambda_1 \cdot E) \cdot \overrightarrow{x} [/mm]
>  
> [mm](\pmat{ 1 & -1 \\ 0 & 2 } + 2 \cdot \pmat{ 1 & 0 \\ 0 & 1 })\overrightarrow{x}[/mm]
>  
> [mm]2x_1 - x_2=0[/mm]
>  [mm]4x_2=0[/mm]
>  

Hier fehlt das =0 am Ende der Gleichung.

> Nun habe ich im Netz gesehen, dass jetzt ein Faktor für
> z.B. [mm]x_2[/mm] zu wählen ist. Sagen wir ich nehme die 1. Dann
> ergibt die obere Gleichung:
>  [mm]2x_1 = 1[/mm]
>  [mm]x_1 = 0,5[/mm]
>  

Den Link würde ich gerne mal sehen, hier hast du nämlich einen Sonderfall, dass in der zweiten Gleichung nur noch die Variable [mm] x_{2} [/mm] vorkommt, und daraus folgt hier [mm] x_{2}=0 [/mm] und damit auch [mm] x_{1}=0. [/mm] Das würde aber zum Nullvektor als Eigenvektor führen, was nicht sein darf.

Genau das ist das Problem, wenn ich den Weg $(A + [mm] \lambda_1 \cdot [/mm] E) [mm] \cdot \overrightarrow{x}=0 [/mm]  $ nehme, dann kann genau das passieren.

Aus

[mm] $\begin{pmatrix}1&-1\\0&2\end{pmatrix}\cdot\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}=2\cdot\begin{pmatrix}x_{1}\\x_{2}\end{pmatrix}$ [/mm]

folgt:

[mm] \begin{pmatrix}x_{1}-x_{2}\\2x_{2}\end{pmatrix}=\begin{pmatrix}2x_{1}\\2x_{2}\end{pmatrix} [/mm]

Daraus folgt folgendes Gleichungssystem:
[mm] \begin{vmatrix}x_{1}-x_{2}=2x_{1}\\2x_{2}=2x_{2}\end{vmatrix} [/mm]

Nun ist die zweite Zeile eine wahre Aussage, also betrachten wir die erste Zeile:

[mm] x_{1}-x_{2}=2x_{1} [/mm]
[mm] \Leftrightarrow -x_{2}=x_{1} [/mm]

Das heißt, jeder Vektor, der diese Bedingung erfüllt, ist Eigenvektor zu [mm] \lambda=2, [/mm] also kann man diese Vektoren wie folgt darstellen:
[mm] \vektor{\alpha\\-\alpha} [/mm] für [mm] \alpha\ne0 [/mm] .

Für die Eigenvektoren zum Eingenwert [mm] \lambda=1 [/mm] gilt:

[mm] \begin{vmatrix}x_{1}-x_{2}=x_{1}\\2x_{2}=x_{2}\end{vmatrix} [/mm]
[mm] \Leftrightarrow \begin{vmatrix}-x_{2}=0\\x_{2}=0\end{vmatrix} [/mm]

Und dieses Gleichungssystem hat folgende Vektoren als Lösung
[mm] \vektor{\alpha\\0} [/mm] für [mm] \alpha\ne0. [/mm]


> Scheint mir nicht korrekt und deckt sich auch nicht mit den
> Lösungen aus dem Lösungsbuch.
>  
> Habt ihr einen Tipp?
>  
> Gruß und Danke!
>  

Marius


Bezug
                                                                
Bezug
Eigenwert einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Mo 08.08.2011
Autor: Haiza

Hui, scheint mir doch noch kompliziert und das Lösungsbuch sagt was anderes. Folgendes steht als Lösung im Lösungsbuch bzw. Anhang (Lothar Papula Band 2):
$ [mm] x_1 [/mm] = [mm] \pmat{ 1 \\ 0 } [/mm] $
$ [mm] x_2 [/mm] = [mm] \bruch{1}{\wurzel{2}} \pmat{ 1 \\ -1 } [/mm] $

Bin jetzt etwas verwirrt durch die verschieden Lösungswege sowie die verschiedenen Lösungen...

Gruß und Danke.

Bezug
                                                                        
Bezug
Eigenwert einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Mo 08.08.2011
Autor: schachuzipus

Hallo nochmal,


> Hui, scheint mir doch noch kompliziert und das Lösungsbuch
> sagt was anderes. Folgendes steht als Lösung im
> Lösungsbuch bzw. Anhang (Lothar Papula Band 2):
>  [mm]x_1 = \pmat{ 1 \\ 0 }[/mm]
>  [mm]x_2 = \bruch{1}{\wurzel{2}} \pmat{ 1 \\ -1 }[/mm]
>  
> Bin jetzt etwas verwirrt durch die verschieden Lösungswege
> sowie die verschiedenen Lösungen...

Na, so verschieden sind doch die Lösungen nicht. Die Wege auch nicht ...

Ein Eigenvektor ist nicht eindeutig.

Es ist ein Element (ungleich dem Nullvektor) des zu einem Eigenwert gehörigen Eigenraumes.

Marius hat dir für a) den Eigenraum zum Eigenwert [mm]\lambda=1[/mm] berechnet zu [mm]\langle{\vektor{\alpha\\ 0}\rangle[/mm]

Und jeder Vektor daraus außer für [mm]\alpha=0[/mm] tut es als Eigenvektor.

Etwa für [mm]\alpha=1[/mm] der aus der Lösung.

Genauso ist aber [mm]\vektor{\pi\\ 0}[/mm] ein Eigenvektor zum Eigenwert [mm]\lambda=1[/mm]. Dieser ergibt sich für [mm]\alpha=\pi[/mm]

Wie sieht denn die Rechnung zu b) aus?

Du musst [mm]A\cdot{}\vektor{x_1\\ x_2}=2\cdot{}\vektor{x_1\\ x_2}[/mm] lösen. (wobei $A$ die Matrix aus dem Ausgangspost sein soll)

Bzw. umgestellt [mm]A\cdot{}\vektor{x_1\\ x_2}-2\cdot{}\vektor{x_1\\ x_2}=\vektor{0\\ 0}[/mm]

Oder [mm](A-2\cdot{}\mathbb{E}_2)\cdot{}\vektor{x_1\\ x_2}=\vektor{0\\ 0}[/mm]

Und das macht man doch bequemerweise, indem man die Matrix [mm]A-2\cdot{}\mathbb{E}_2[/mm] in Zeilenstufenform bringt.

Bei b) tut es als Eigenvektor dann auch etwa [mm] $\vec{v}=\vektor{1\\-1}$ [/mm]

Die Eigenvektoren aus der Lösung sind offensichtlich so gewählt, dass sie normiert sind ...



>  
> Gruß und Danke.

LG

schachuzipus


Bezug
                                                                                
Bezug
Eigenwert einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:14 Di 09.08.2011
Autor: Haiza


> Die Eigenvektoren aus der Lösung sind offensichtlich so
> gewählt, dass sie normiert sind ...

Normiert? Wie macht man das denn nun wieder?

Danke für die Antworten.

Gruß

EDIT: Grad nochmal nachgedacht. Normieren heißt auf die Länge 1 bringen. Jedoch ist doch die Lösung für $ [mm] \lambda_2 [/mm] $ bereits $ [mm] \pmat{ 1 \\ -1 }$ [/mm] laut Lösungsbuch und trotzdem wurde $ [mm] \bruch{1}{ \wurzel{2} } [/mm] $ davor geschrieben. Wieso?


Bezug
                                                                                        
Bezug
Eigenwert einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 09:08 Di 09.08.2011
Autor: fred97


> > Die Eigenvektoren aus der Lösung sind offensichtlich so
> > gewählt, dass sie normiert sind ...
>  
> Normiert? Wie macht man das denn nun wieder?
>  
> Danke für die Antworten.
>  
> Gruß
>  
> EDIT: Grad nochmal nachgedacht. Normieren heißt auf die
> Länge 1 bringen. Jedoch ist doch die Lösung für
> [mm]\lambda_2[/mm] bereits [mm]\pmat{ 1 \\ -1 }[/mm] laut Lösungsbuch und
> trotzdem wurde [mm]\bruch{1}{ \wurzel{2} }[/mm] davor geschrieben.
> Wieso?

Hat denn der Vektor  [mm]\pmat{ 1 \\ -1 }[/mm]  die Länge 1 ??  Berechne mal diese Länge.

FRED

>  


Bezug
                                                                                                
Bezug
Eigenwert einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:18 Di 09.08.2011
Autor: Haiza

Die Länge beträgt 1,41 und das mal $ [mm] \bruch{1}{ \wurzel{2} } [/mm] $ ergibt 1. Ok verstanden :-) Daaaaaaaaanke :-)

Gruß

Bezug
                                                                
Bezug
Eigenwert einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:30 Di 09.08.2011
Autor: Haiza

Ahhhhhh! Habe mich heute, frisch "ausgeschlafen" (habe Semesterferien, aber da meine Freundin früh raus muss, nutze ich die Zeit zum Mathe lernen) nochmal dran gesetzt und jetzt verstehe ich deinen Rechenweg.
Ich kann zwar nicht Erklären was genau ich da berechne, aber ich kann es nun Rechnen.

Gruß

Bezug
        
Bezug
Eigenwert einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Mo 08.08.2011
Autor: schachuzipus

Hallo Haiza,

kleine Ergänzung, die sich lohnt zu merken, da sie jegliche Rechnung erspart.


> Bestimmen Sie den Eigenwert der Matrix:
>  [mm]\pmat{ 1 & -1 \\ 0 & 2 }[/mm]
>  

Dies ist eine Dreiecksmatrix, da stehen die Eigenwerte auf der Hauptdiagonalen ...

Die kannst du also direktemeng ablesen.

Und ihre Determinante ist das Produkt der Hauptdiagonaleinträge.

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]