matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenEigenwertproblemeEigenwert/cg-Verfahren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Eigenwertprobleme" - Eigenwert/cg-Verfahren
Eigenwert/cg-Verfahren < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert/cg-Verfahren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:00 Di 11.07.2017
Autor: knowhow

Aufgabe 1
Aufgabe 1: Gegeben sei die Matrix

[mm] A=\pmat{ 3 & 0&2 \\ 0 & 5&0\\2&0&3 } [/mm]

a) Argumentiern Sie mithilfe des Satzes von Gershgorin, dass für die EW [mm] \lambda_A [/mm] von A gilt:

[mm] \lambda_A \in [/mm] [1,5]

b) Zur genaueren Bestimmung der EW soll nun der QR-Algorithmus mit einfachem Shift herangezogen werden. Führe von Hand zwei Iterationen dieses Verfahren für A durch. Was können Sie über die Konvergenz des Algorithmus in diesem speziellen Fall aussagen?


Aufgabe 2
Gegeben sei eine Funktion [mm] f:\IR^6\rightarrow \IR [/mm] via

[mm] f(x_1,x_2,x_3,x_4,x_5,x_6)=\bruch{3}{2}x^2_1+\bruch{5}{2}x^2_2+\bruch{3}{2}x_3^2+2x_1x_3+3x_4^2+5x^2_5+3x_6^2+4x_4x_6-10x_2-20x_5+30, [/mm] deren Minimum mithilfe des cg-Verfahren gefunden werden soll. Ermitteln Sie hierzu bis auf eine Nachkommastellen genau die vierte Iterierte zum Startwert [mm] (x_1,x_2,x_3,x_4,x_5,x_6)^T=(1,10,0,2,20,0) [/mm]

Hinweis: Aufgabe 1a)


Hallo,

ich verzeifel fast an diesen Aufgaben und ich hoffe daher, dass ihr mir etwas weiterhelfen könntet.

zu Aufg.1 a)

Der Satz von Gershgorin ist folgend def.:

[mm] K_i=\{\mu\in\IC: |\mu-a_{i,i}| \le \summe_{k\not=i} |a_{i,k}|\} [/mm]

also erhalten wir für [mm] K_1=\{\mu\in\IC: |\mu-3| \le 2\}=[1,5] [/mm]

[mm] K_2=\{\mu\in\IC: |\mu-5| \le 0 \}=[5,5] [/mm]

[mm] K_3=\{\mu\in\IC: |\mu-5| \le 0\}=[1,5] [/mm]

also ist [mm] K_1\cup K_2\cup K_3=[1,5]\cup[5,5]\cup[1,5]=[1,5] [/mm]

Da sich die Kreise berühren, liefert der Kreissatz von Gershgorin, dass alle 3 EWe im Intervall [1,5] liegen.

b) Es sei [mm] A_\mu*I, [/mm] wobei [mm] \mu=a_{33}=3. [/mm] Also haben wir

[mm] A_\mu*I=\pmat{ 3 & 0&2 \\ 0 & 5&0\\2&0&3 }-\pmat{ 3 & 0&0 \\ 0 & 3&0\\0&0&3 }=\underbrace{\pmat{ 0 & 0&2 \\ 0 & 2&0\\2&0&0 }}_{\tilde{A}} [/mm]

[mm] \alpha_1=-2, u_1=\bruch{\vektor{0 \\ 0\\2}+\vektor{2 \\ 0\\0}}{||\vektor{0 \\ 0\\2}+\vektor{2 \\ 0\\0}||}=\bruch{1}{\wurzel{8}}\vektor{2\\0\\2} [/mm]

[mm] Q=I-2u_1u_1^T=\pmat{ 0 & 0&-1 \\ 0 & 1&0\\1&0&0 } [/mm]

[mm] Q\tilde{A}=\underbrace{\pmat{ -2 & 0&0 \\ 0 & 2&0\\0&0&2 }}_{=:R} [/mm]

[mm] A^{(1)}=RQ+\mu*I=\pmat{ 3 & 0&2 \\ 0 & 5&0\\2&0&3 } [/mm]

[mm] \Rightarrow [/mm] man erhält somit die Ursprungsmatrix

[mm] \Rtightarrow [/mm] für symmetr. Matrix gibt QR mit Shift keine Aussage über EW.

Stimmt soweit, meine Überlegung zu Aufgabe 1?

Aufg.2

man schreibe f in Matrix. Also erhalten wir:

[mm] f(...)=\bruch{1}{2}x^t\pmat{ 3 & 0&2 &0&0&0\\ 0 & 5&0&0&0&0\\2&0&3 &0&0&0\\0&0&0&6&0&4\\0&0&0&0&10&0\\0&0&0&4&0&2}x-(0,10,0,0,20,0)x+30 [/mm]

Nun bin ich nach den folgenden Schritten vorangegangen: cg-Verfahren

Vor.: [mm] f(x)=\bruch{1}{2}x^TAx-bx+c [/mm] spd, [mm] \nabla [/mm] f(x)=Ax-b

Start: Wähle [mm] x_0 [/mm] und setze in [mm] r_0=-\nabla f(x_0) [/mm]

also erhalten wir wenn wir den Startwert aus der Aufgabenstellung in [mm] \nabla [/mm] f(x) mit minus einsetzen

[mm] r_0=(-3,-40,-2,-12,-180,-8)^T [/mm]

1. Schritt : da [mm] \nabla f(x_0)\not=0 [/mm] ist, müssen wir weitermachen.

2. Schritt

setze [mm] x_{k+1}:=x_k+\alpha_k*r_k, [/mm] wobei [mm] \alpha=\bruch{||\nabla f(x_k)||^2}{||r_k||_A^2} [/mm]

also in unserem Fall: Ab da wird die Rechnung unschön

also erhalten wir für [mm] \alpha_0=\bruch{r_0^T*r_0}{r_0^T*A*r_0}=\bruch{34.221}{3.295.081}=0,0104 [/mm]

dann bekommen wir für [mm] x_1=\vektor{0,9688\\9,584\\-0,0208\\1,8752\\18,128\\-0,0832} [/mm]

falls ich mich nicht verrechnet habe, was durchaus passiert ist.

Ab da habe ich es aufgegeben weiterzurechnen, da ich wahrscheinlich bis morgen noch dransitzen würde und das für 4 Iterationen, wobei ich die 1. Iteration nicht zuende berechnet bekommen habe aufgrund der unschönen Zahlen.

Dann müssen noch folgende Schritte berechnet werden:

3. Schritt Berechne

[mm] r_{k+1}=-\nabla f(x_{k+1})+\beta_k*r_k, [/mm] wobei [mm] \beta_k=\bruch{||\nabla f(x_{k+1}||^2}{||\nablaf(x_k)||^2} [/mm]

4. Schritt: gehe zu Schritt 1

Mit den Hinweis wissen wir nur, dass die Matrix aus Aufg 1) a) in der Matrix A enthalten ist, somit müssen deren EW in [1,5] liegen. Aber in wie fern bringt mir diese Information weiter.

Gibt es da einen etwas schöneren Weg?

Ich hoffe, Ihr könnt mir da wirklich weiterhelfen.

Vielen Dank im Voraus.



        
Bezug
Eigenwert/cg-Verfahren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Sa 15.07.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]