matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenwert beweisen
Eigenwert beweisen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Mi 09.04.2008
Autor: Not_Helpless

Aufgabe
a.) Beweisen Sie: Ist a ein Eigenwert von A, so hat [mm] A^k [/mm] den Eigenwert [mm] a^k (k\in\IN). [/mm]
b.) Gilt auch die Umkehrung? Begründen Sie Ihre Antwort.

bekanntlich gilt ja: [mm] M*v=\lambda*v [/mm]

bezogen auf a.):

Av=av und [mm] A^{k}v=a^{k}v [/mm]

Ich hab jetzt nur nicht wirklich ne Ahnung wie ich a.) beweisen könnte, mit dem Schritt evtll.:?

[mm] Av-av=A^{k}v-a^{k}v [/mm]
[mm] Av-A^{k}v=-a^{k}v+av [/mm]
[mm] Av(1-A^{k-1})= av(-a^{k-1}+1) [/mm]

könnte mir da jemand vielleicht nen bisschen auf die Sprünge helfen?:-)

liebe Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwert beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Mi 09.04.2008
Autor: statler

Hi und [willkommenmr]

> a.) Beweisen Sie: Ist a ein Eigenwert von A, so hat [mm]A^k[/mm] den
> Eigenwert [mm]a^k (k\in\IN).[/mm]
>  b.) Gilt auch die Umkehrung?
> Begründen Sie Ihre Antwort.

>  bekanntlich gilt ja: [mm]M*v=\lambda*v[/mm]

Wieso gilt das bekanntlich? Wenn M = 1, v = 2 und [mm] \lambda [/mm] = 3 ist, dann gilt das doch nicht! Das kann man so einfach nicht schreiben, ohne zu sagen, was mit den verschiedenen Buchstaben gemeint ist.

> bezogen auf a.):
>  
> Av=av und [mm]A^{k}v=a^{k}v[/mm]
>  
> Ich hab jetzt nur nicht wirklich ne Ahnung wie ich a.)
> beweisen könnte, mit dem Schritt evtll.:?

Diese Behauptung schreit doch förmlich nach einem Beweis mittels vollständiger Induktion, versuch's mal.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Eigenwert beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Do 10.04.2008
Autor: Not_Helpless

jop,damit klappts:

[mm] A^{k+1}v=a^{k+1}v [/mm]

[mm] A^{k+1}v=AA^{k}v=Aa^{k}v=a^{k}Av=a^{k}aV=a^{k+1}v [/mm]

nun war noch die Frage danach, ob das auch für die Umkehrung gilt, wie begründet man das?

liebe Grüüüüße

Bezug
                        
Bezug
Eigenwert beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Do 10.04.2008
Autor: Marcel

Hallo,

> jop,damit klappts:
>  
> [mm]A^{k+1}v=a^{k+1}v[/mm]
>  
> [mm]A^{k+1}v=AA^{k}v=Aa^{k}v=a^{k}Av=a^{k}aV=a^{k+1}v[/mm]
>  
> nun war noch die Frage danach, ob das auch für die
> Umkehrung gilt, wie begründet man das?

nehmen wir doch einfach mal die $2 [mm] \times [/mm] 2$-Einheitsmatrix, nennen wir sie [mm] $E=E_2$. [/mm]

Hier gilt [mm] $E^2=E$, [/mm] also [mm] $\det(\lambda*E^2-E)=\det(\lambda*E-E)=0$ $\gdw$ $\lambda=1$. [/mm] D.h. die Einheitsmatrix $E$ (und damit auch [mm] $E^2$) [/mm] hat einzig und allein den Eigenwert $1$.

Nun gilt aber auch für $a=-1$:

[mm] $a^2=(-1)^2=1$, [/mm] d.h. mit $a=-1$ ist [mm] $a^2$ [/mm] ein Eigenwert von [mm] $E^2=E*E=E$, [/mm] aber $a=-1$ war kein Eigenwert von $E$.

Die Umkehrung gilt also i.a. nicht.

Ein Problem ist hier z.B. folgendes:
Es gilt für $r > 0$:
Ist $k$ gerade, so gilt [mm] $a^k=r$ $\gdw$ $a=\pm \sqrt[k]{r}$ [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]