matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert/Invertierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenwert/Invertierbarkeit
Eigenwert/Invertierbarkeit < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert/Invertierbarkeit: Tipps/Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:55 Mo 30.03.2009
Autor: Rubstudent88

Aufgabe
Sei T: V [mm] \to [/mm] V ein nilpotenter Endomorphismus des endlich-dimensionalen [mm] \IR-Vektorraumes [/mm] V (d.h. es existiert ein k [mm] \varepsilon \IN [/mm] mit [mm] T^{k}=0). [/mm]
(i) Zeigen Sie, dass 0 der einzige Eigenwert von T ist.
(ii) Zeigen Sie, dass der Endomorphismus [mm] (id_{v} [/mm] - T) invertierbar ist.

Hallo liebes Matheforum.net,

ich bräuchte bei obiger Aufgabe erneut eure Hilfe.

Aufgabenteil (i) habe ich so gelöst:

Sei [mm] \lambda [/mm] Eigenwert von T, d.h. [mm] \exists [/mm] v [mm] \varepsilon [/mm] V, [mm] v\not=0: (T(v)=\lambda*v) [/mm]
Wir haben einen nilpotenten Endomorphismus vorliegen; d.h. [mm] \exists [/mm] k [mm] \varepsilon \IN [/mm] mit [mm] T^{k}=0 [/mm]

Nutze diese Bedingung aus:

[mm] (T(v))^{k}=(\lambda*v)^{k}=0 \Rightarrow (\lambda)^{k}=0 \vee v^k=0 [/mm]
Da [mm] v\not=0 \Rightarrow (\lambda)^{k}=0 \Rightarrow \lambda=0 \Rightarrow [/mm] 0 ist einziger Eigentwert von T.

Könntet ihr mir sagen. ob diese Beweisführung so schlüssig und richitg?

zu (ii): Ich möchte dies zeigen, indem ich zeige, dass T bijektiv ist. Allerdings muss ich hier zunächst wisssen, wie meine [mm] (id_{v} [/mm] - T) Abbildung aussieht. Und das weiß ich leider nicht. Wie habe ich hier meine Abbildung, wenn ich nicht weiß, wie T aussieht?
Ich habe einmal [mm] id_{v}=v, [/mm] also v=v; T ist ein Endomorphismus, sieht eigentlich doch genauso aus oder? Und wenn ich das subtrahiere, bekomme ich keine wirklich hilfreiche Abbildung. Deswegen meine Frage: Wo ist hier mein Denkfehler?

MFG

rubstudent88

        
Bezug
Eigenwert/Invertierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Mo 30.03.2009
Autor: fred97


> Sei T: V [mm]\to[/mm] V ein nilpotenter Endomorphismus des
> endlich-dimensionalen [mm]\IR-Vektorraumes[/mm] V (d.h. es existiert
> ein k [mm]\varepsilon \IN[/mm] mit [mm]T^{k}=0).[/mm]
>  (i) Zeigen Sie, dass 0 der einzige Eigenwert von T ist.
>  (ii) Zeigen Sie, dass der Endomorphismus [mm](id_{v}[/mm] - T)
> invertierbar ist.
>  Hallo liebes Matheforum.net,
>  
> ich bräuchte bei obiger Aufgabe erneut eure Hilfe.
>  
> Aufgabenteil (i) habe ich so gelöst:
>  
> Sei [mm]\lambda[/mm] Eigenwert von T, d.h. [mm]\exists[/mm] v [mm]\varepsilon[/mm] V,
> [mm]v\not=0: (T(v)=\lambda*v)[/mm]
>  Wir haben einen nilpotenten
> Endomorphismus vorliegen; d.h. [mm]\exists[/mm] k [mm]\varepsilon \IN[/mm]
> mit [mm]T^{k}=0[/mm]
>  
> Nutze diese Bedingung aus:
>  
> [mm](T(v))^{k}=(\lambda*v)^{k}=0 \Rightarrow (\lambda)^{k}=0 \vee v^k=0[/mm]

Das ist doch völliger Blödsinn ! Du potenzierst Vektoren ?!

$Tv = [mm] \lambda [/mm] v$, also ist

            $0 = T^kv = [mm] \lambda^k [/mm] v$

Somit ist [mm] \lambda [/mm] = 0.



>  
> Da [mm]v\not=0 \Rightarrow (\lambda)^{k}=0 \Rightarrow \lambda=0 \Rightarrow[/mm]
> 0 ist einziger Eigentwert von T.
>  
> Könntet ihr mir sagen. ob diese Beweisführung so schlüssig
> und richitg?
>  
> zu (ii): Ich möchte dies zeigen, indem ich zeige, dass T
> bijektiv ist. Allerdings muss ich hier zunächst wisssen,
> wie meine [mm](id_{v}[/mm] - T) Abbildung aussieht. Und das weiß ich
> leider nicht. Wie habe ich hier meine Abbildung, wenn ich
> nicht weiß, wie T aussieht?
> Ich habe einmal [mm]id_{v}=v,[/mm] also v=v; T ist ein
> Endomorphismus, sieht eigentlich doch genauso aus oder? Und
> wenn ich das subtrahiere, bekomme ich keine wirklich
> hilfreiche Abbildung. Deswegen meine Frage: Wo ist hier
> mein Denkfehler?

Das weiß ich nicht

Aber folgendes habt Ihr sicher gelernt:

$ [mm] \lambda id_{v} [/mm]  - T$ ist invertierbar [mm] \gdw \lambda [/mm] ist kein Eigenwert von T

Hilft das ?

FRED



>  
> MFG
>  
> rubstudent88


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]