matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert Eingenvektor Matrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Eigenwert Eingenvektor Matrix
Eigenwert Eingenvektor Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert Eingenvektor Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 Di 01.02.2011
Autor: DerKopfQualmt

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.matheplanet.com/default3.html?call=viewforum.php?forum=-2&ref=http%3A%2F%2Fwww.google.de%2Fsearch%3Fhl%3Dde%26client%3Dfirefox-a%26hs%3De4c%26rls%3Dorg.mozilla%253Ade%253Aofficial%26q%3Dmathe%2Bforu%252C%26aq%3Df%26aqi%3Dg10%26aql%3D%26oq%3D]

Hab ein großes Problem mit der Lösung der letzten beiden Aufgaben. Die ersten Aufgaben hab ich noch ohne große Probleme lösen können.

i) [-1, 0 , -1] und [-18, -12 , -6] (Eigenvektor mal Eigenwert)
ii) Diagonalmatrix mit den Einträgen -1 , 3, und -1 in der Diagonalen
iii) da hab ich ein LGS gelöst und bekomme dann raus  -2 x [1 , 0 , 1] + 1 x [3 , 2 , 1 ] + 1 x [0 , -2 , 1]

[Dateianhang nicht öffentlich]





Dateianhänge:
Anhang Nr. 1 (Typ: GIF) [nicht öffentlich]
        
Bezug
Eigenwert Eingenvektor Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Mi 02.02.2011
Autor: angela.h.b.


Hallo,

[willkommenmr].

Setze nächstes Mal doch bitte einen direkten Link zum Beitrag im anderen Forum, so daß man ohne Mühe sehen kann, ob noch Hilfe nötig ist.


> Hab ein großes Problem mit der Lösung der letzten beiden
> Aufgaben. Die ersten Aufgaben hab ich noch ohne große
> Probleme lösen können.
>  
> i) [-1, 0 , -1] und [-18, -12 , -6] (Eigenvektor mal
> Eigenwert)
>  ii) Diagonalmatrix mit den Einträgen -1 , 3, und -1 in
> der Diagonalen
>  iii) da hab ich ein LGS gelöst und bekomme dann raus  -2
> x [1 , 0 , 1] + 1 x [3 , 2 , 1 ] + 1 x [0 , -2 , 1]
>

>

Nun willst Du [mm] Ae_1 [/mm] wissen.

Du weißt

[mm] Ae_1= [/mm] A(-2* [1 , 0 , 1] + 1*[3 , 2 , 1 ] + 1 *[0 , -2 , 1] )

= -2A([1,0,1]) + ... +... ,

und was die Matrix mit den Eigenvektoren macht, weißt Du ja.



Auf diese Weise kannst Du auch [mm] Ae_2 [/mm] und [mm] Ae_3 [/mm] bestimmen, und wenn Du Dir klarmachst, daß in den Spalten von A die Bilder der Stadardbasisvektoren stehen, dann hast Du Deine Matrix.

Gruß v. Angela

>  
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]