matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert, Eigenraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Eigenwert, Eigenraum
Eigenwert, Eigenraum < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert, Eigenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Mo 23.04.2012
Autor: theresetom

Aufgabe
Bestimme alle Eigenwerte und Eigenräume der Matrix, wobei [mm] \lambda \in \IK. [/mm] Ist A diagonalisierbar?
[mm] A=\pmat{ \lambda & 1&& \\ &\lambda&\ddots& \\&&\ddots&1\\&&&\lambda} [/mm]
wo nichts steht ist eine 0

s..Eigenwert
Ich weiß ja nicht wie groß die Matrix ist, also nehme ich einen belieben wert k an?
0= det(A-s*I) [mm] =\pmat{ \lambda -s & 1&& \\ &\lambda-s&\ddots& \\&&\ddots&1\\&&&\lambda-s} [/mm] = [mm] (\lambda-s)^k [/mm]

[mm] 0=\lambda [/mm] - s
s= [mm] \lambda [/mm]
STimmt das?

Eigenraum [mm] \lambda [/mm] = [mm] ker(A-\lambda I_k [/mm] ) = [mm] ker\pmat{ 0 & 1&& \\ &0&\ddots& \\&&\ddots&1\\&&&0} [/mm]
der Kern wird aufgespannt vom vektor  [mm] <\pmat{0\\0\\\vdots\\0\\1}> [/mm]
Da bin ich mir unsicher..


        
Bezug
Eigenwert, Eigenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Mo 23.04.2012
Autor: wieschoo


> Bestimme alle Eigenwerte und Eigenräume der Matrix, wobei
> [mm]\lambda \in \IK.[/mm] Ist A diagonalisierbar?
>  [mm]A=\pmat{ \lambda & 1&& \\ &\lambda&\ddots& \\ &&\ddots&1\\ &&&\lambda}[/mm]
>  
> wo nichts steht ist eine 0
>  s..Eigenwert
>  Ich weiß ja nicht wie groß die Matrix ist, also nehme
> ich einen belieben wert k an?
>  0= det(A-s*I) [mm]=\blue{\operatorname{det}(}\pmat{ \lambda -s & 1&& \\ &\lambda-s&\ddots& \\ &&\ddots&1\\ &&&\lambda-s}\blue{)}[/mm]
> = [mm](\lambda-s)^k[/mm]
>  
> [mm]0=\lambda[/mm] - s
>  s= [mm]\lambda[/mm]
> STimmt das?

Die Eigenwerte sind schon die [mm] $\lambda$'s. [/mm] Kann man ja direkt ablesen.

>  
> Eigenraum [mm]\lambda[/mm] = [mm]ker(A-\lambda I_k[/mm] ) = [mm]ker\pmat{ 0 & 1&& \\ &0&\ddots& \\ &&\ddots&1\\ &&&0}[/mm]
>  
> der Kern wird aufgespannt vom vektor  
> [mm]<\pmat{0\\ 0\\ \vdots\\ 0\\ 1}>[/mm]
>  Da bin ich mir unsicher..
>

Dan rechne doch einmal [mm]\pmat{ 0 & 1&& \\ &0&\ddots& \\ &&\ddots&1\\ &&&0}\cdot\pmat{0\\ 0\\ \vdots\\ 0\\ 1}[/mm] nach. Und kommt Null raus?

gruß
WIESCHOO

Bezug
                
Bezug
Eigenwert, Eigenraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 Mo 23.04.2012
Autor: theresetom

Nein

$ [mm] \pmat{ 0 & 1&& \\ &0&\ddots& \\ &&\ddots&1\\ &&&0}\cdot\pmat{1\\ 0\\ \vdots\\ 0\\ 0} [/mm] $
Also spannt [mm] <\pmat{1\\ 0\\ \vdots\\ 0\\ 0}> [/mm] den Kern auf.

Frage: Ist A diagonlaisierbar?
Der Kern ist 1 dimensional.
Aber ich weiß nicht wieviele Spalten meine Matrix hat. Wenn die Matrix nur 1 zeile und Spalte hat - ist sie diagonalisierbar.


Bezug
                        
Bezug
Eigenwert, Eigenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mo 23.04.2012
Autor: wieschoo


> Nein
>  
> [mm]\pmat{ 0 & 1&& \\ &0&\ddots& \\ &&\ddots&1\\ &&&0}\cdot\pmat{1\\ 0\\ \vdots\\ 0\\ 0}[/mm]
> Also spannt [mm]<\pmat{1\\ 0\\ \vdots\\ 0\\ 0}>[/mm] den Kern auf.
>

Ich kann ja meine Frage noch einmal stellen ;-)
Gilt denn [mm]\pmat{ 0 & 1&& \\ &0&\ddots& \\ &&\ddots&1\\ &&&0}\cdot\pmat{0\\ 0\\ \vdots\\ 0\\ 1}=\vec{0}[/mm] ?
Ja das ist der Kern.

> Frage: Ist A diagonlaisierbar?
>  Der Kern ist 1 dimensional.
> Aber ich weiß nicht wieviele Spalten meine Matrix hat.
> Wenn die Matrix nur 1 zeile und Spalte hat - ist sie
> diagonalisierbar.
>

Genauso ist es.

Bezug
                                
Bezug
Eigenwert, Eigenraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Mo 23.04.2012
Autor: theresetom

danke,lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]