matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert, Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Eigenwert, Abbildung
Eigenwert, Abbildung < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert, Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:41 Di 24.04.2012
Autor: theresetom

Aufgabe
Sei V ein endlich dimensionaler [mm] \IK-Vektorraum, \phi:V->V [/mm] linear, [mm] \lambda \in \IK [/mm] ein Eigenwert von [mm] \phi [/mm] und [mm] E_{\lambda} [/mm] = [mm] ker(\phi [/mm] - [mm] \lambda id_V) [/mm] der entsprechende Eigenraum.
Darüber hinaus wei [mm] \psi:V->V [/mm] eine weitere lineare Abbildung, die mit [mm] \phi [/mm] kommutiert, d.h. [mm] \phi \psi [/mm] = [mm] \psi \phi. [/mm] Zeige, dass [mm] \psi [/mm] die Eigenräume von [mm] \phi [/mm] invariant lässt, d.h. [mm] \psi(E_\lambda) \subseteq E_\lambda [/mm]

[mm] \lambda [/mm] Eigenwert von [mm] \phi [/mm]
[mm] \phi(v)=\lambda [/mm] v
[mm] v\not=0..Eigenvektor [/mm] von [mm] \phi [/mm] zum Eigenwert [mm] \lambda [/mm]

Sei also v ein beliebiger Eigenvektor von [mm] \phi [/mm] zum Eigenwert [mm] \lambda [/mm]
ZZ.: [mm] \psi(v)\subseteq [/mm]  v gilt
Ich wende [mm] \phi [/mm] auf die linke seite an
[mm] \phi (\psi(v)) [/mm] = [mm] \psi(\phi(v))=\psi(\lambda [/mm] *v)= [mm] \lambda [/mm]  * [mm] \psi(v) [/mm]
=??

oder ist es besser anzufangen mit
[mm] \psi(ker(\phi [/mm] - [mm] \lambda id_V)) \subseteq ker(\phi [/mm] - [mm] \lambda id_V) [/mm] ?

Liebe grüße

        
Bezug
Eigenwert, Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:00 Di 24.04.2012
Autor: fred97


> Sei V ein endlich dimensionaler [mm]\IK-Vektorraum, \phi:V->V[/mm]
> linear, [mm]\lambda \in \IK[/mm] ein Eigenwert von [mm]\phi[/mm] und
> [mm]E_{\lambda}[/mm] = [mm]ker(\phi[/mm] - [mm]\lambda id_V)[/mm] der entsprechende
> Eigenraum.
>  Darüber hinaus wei [mm]\psi:V->V[/mm] eine weitere lineare
> Abbildung, die mit [mm]\phi[/mm] kommutiert, d.h. [mm]\phi \psi[/mm] = [mm]\psi \phi.[/mm]
> Zeige, dass [mm]\psi[/mm] die Eigenräume von [mm]\phi[/mm] invariant lässt,
> d.h. [mm]\psi(E_\lambda) \subseteq E_\lambda[/mm]
>  [mm]\lambda[/mm] Eigenwert
> von [mm]\phi[/mm]
>  [mm]\phi(v)=\lambda[/mm] v
>  [mm]v\not=0..Eigenvektor[/mm] von [mm]\phi[/mm] zum Eigenwert [mm]\lambda[/mm]
>  
> Sei also v ein beliebiger Eigenvektor von [mm]\phi[/mm] zum
> Eigenwert [mm]\lambda[/mm]
>  ZZ.: [mm]\psi(v)\subseteq[/mm]  v gilt

Nein. Du mußt zeigen: [mm]\psi(v)\in[/mm]  [mm] E_{\lambda} [/mm]


>  Ich wende [mm]\phi[/mm] auf die linke seite an
>  [mm]\phi (\psi(v))[/mm] = [mm]\psi(\phi(v))=\psi(\lambda[/mm] *v)= [mm]\lambda[/mm]  
> * [mm]\psi(v)[/mm]
>  =??


Da hast Du doch was Du brauchst: [mm] \phi (\psi(v)) [/mm] = [mm] \lambda*\psi(v) [/mm]   !!!!


FRED


>  
> oder ist es besser anzufangen mit
>  [mm]\psi(ker(\phi[/mm] - [mm]\lambda id_V)) \subseteq ker(\phi[/mm] -
> [mm]\lambda id_V)[/mm] ?
>  
> Liebe grüße


Bezug
                
Bezug
Eigenwert, Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:46 Di 24.04.2012
Autor: theresetom

SO:

ZZ $ [mm] \psi(v)\in [/mm] $  $ [mm] E_{\lambda} [/mm] $

Sei v beliebige Eigenvektor zu [mm] \lambda [/mm] von [mm] \phi [/mm]

[mm] \phi(\psi(v))=\psi(\phi(v))=\psi(\lambda [/mm] v) = [mm] \lambda [/mm] * [mm] \psi(v) [/mm]

lg

Bezug
                        
Bezug
Eigenwert, Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:15 Mi 25.04.2012
Autor: tobit09

Hallo theresetom,


> ZZ [mm]\psi(v)\in[/mm]  [mm]E_{\lambda}[/mm]
>  
> Sei v beliebige Eigenvektor zu [mm]\lambda[/mm] von [mm]\phi[/mm]

Diese beiden Zeilen müssten natürlich noch vertauscht werden.

Statt $v$ Eigenvektor zu [mm] $\lambda$ [/mm] solltest du lieber [mm] $v\in E_{\lambda}$ [/mm] schreiben, damit du $v=0$ nicht gesondert behandeln musst.


> [mm]\phi(\psi(v))=\psi(\phi(v))=\psi(\lambda[/mm] v) = [mm]\lambda[/mm] * [mm]\psi(v)[/mm]

[ok]


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]