matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert + Komposition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenwert + Komposition
Eigenwert + Komposition < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert + Komposition: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Di 17.02.2009
Autor: visionmaster17

Hallo,

ich habe eine Frage zu der Musterlösung einer Aufgabe.

Aufgabe:

Es seien [mm] \Phi [/mm] ein bijektiver Endomorphismus eines n-dimensionalen euklidischen Vektorraums V und [mm] \Phi^{+} [/mm] die zu [mm] \Phi [/mm] adjungierte Abbildung. [mm] \Phi^{+} \circ \Phi [/mm] und [mm] \Phi \circ \Phi^{+} [/mm] sind selbstadjungiert und haben nur positive Eigenwerte.

Ziegen Sie: [mm] \Phi^{+} \circ \Phi [/mm] und [mm] \Phi \circ \Phi^{+} [/mm] haben identische Eigenwerte.

Musterlösung:

Sei [mm] \lambda [/mm] ein Eigenwert zum Eigenvektor v [mm] \not= [/mm] 0 von [mm] \Phi \circ \Phi^{+}. [/mm]

Dann ist [mm] \Phi^{+}(v) \not=0 [/mm] und es gilt

[mm] \Phi^{+} \circ \Phi(\Phi^{+}(v)) [/mm] = [mm] \Phi^{+}(\Phi \circ \Phi^{+}(v)) [/mm] = [mm] \Phi^{+}(\lambda [/mm] v) = [mm] \lambda \Phi^{+}(v). [/mm]

Also ist [mm] \lambda [/mm] auf Eigenwert von [mm] \Phi^{+} \circ \Phi. [/mm]

Beweis für [mm] \Phi^{+} \circ \Phi [/mm] analog.

Okay - der Beweis ist ja eigentlich recht gut zu verstehen und einleuchtend. Doch, die erste Folgerung des Beweises irritiert mich ein wenig.

Es wird ja ein beliebiger Eigenwert, [mm] \lambda, [/mm] von [mm] \Phi \circ \Phi^{+} [/mm] hergenommen. Für den dazugehörigen Eigenvektor v gilt dann laut Musterlösung [mm] \Phi^{+}(v) \not=0. [/mm] Ich frage mich wieso das gilt. Klar, wäre [mm] \Phi^{+}(v) [/mm] = 0, so könnte [mm] \Phi^{+}(v) [/mm] kein Eigenvektor sein, da es keine Eigenvektoren gibt, die Null sind. Hat es etwas damit zu tun, dass [mm] \Phi^{+} \circ \Phi [/mm] und [mm] \Phi \circ \Phi^{+} [/mm] nur positive Eigenwerte haben?

Danke euch.

        
Bezug
Eigenwert + Komposition: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Di 17.02.2009
Autor: fred97


> Hallo,
>  
> ich habe eine Frage zu der Musterlösung einer Aufgabe.
>  
> Aufgabe:
>  
> Es seien [mm]\Phi[/mm] ein bijektiver Endomorphismus eines
> n-dimensionalen euklidischen Vektorraums V und [mm]\Phi^{+}[/mm] die
> zu [mm]\Phi[/mm] adjungierte Abbildung. [mm]\Phi^{+} \circ \Phi[/mm] und [mm]\Phi \circ \Phi^{+}[/mm]
> sind selbstadjungiert und haben nur positive Eigenwerte.
>
> Ziegen Sie: [mm]\Phi^{+} \circ \Phi[/mm] und [mm]\Phi \circ \Phi^{+}[/mm]
> haben identische Eigenwerte.
>  
> Musterlösung:
>  
> Sei [mm]\lambda[/mm] ein Eigenwert zum Eigenvektor v [mm]\not=[/mm] 0 von
> [mm]\Phi \circ \Phi^{+}.[/mm]
>  
> Dann ist [mm]\Phi^{+}(v) \not=0[/mm] und es gilt
>  
> [mm]\Phi^{+} \circ \Phi(\Phi^{+}(v))[/mm] = [mm]\Phi^{+}(\Phi \circ \Phi^{+}(v))[/mm]
> = [mm]\Phi^{+}(\lambda[/mm] v) = [mm]\lambda \Phi^{+}(v).[/mm]
>  
> Also ist [mm]\lambda[/mm] auf Eigenwert von [mm]\Phi^{+} \circ \Phi.[/mm]
>  
> Beweis für [mm]\Phi^{+} \circ \Phi[/mm] analog.
>  
> Okay - der Beweis ist ja eigentlich recht gut zu verstehen
> und einleuchtend. Doch, die erste Folgerung des Beweises
> irritiert mich ein wenig.
>  
> Es wird ja ein beliebiger Eigenwert, [mm]\lambda,[/mm] von [mm]\Phi \circ \Phi^{+}[/mm]
> hergenommen. Für den dazugehörigen Eigenvektor v gilt dann
> laut Musterlösung [mm]\Phi^{+}(v) \not=0.[/mm] Ich frage mich wieso
> das gilt. Klar, wäre [mm]\Phi^{+}(v)[/mm] = 0, so könnte [mm]\Phi^{+}(v)[/mm]
> kein Eigenvektor sein, da es keine Eigenvektoren gibt, die
> Null sind. Hat es etwas damit zu tun, dass [mm]\Phi^{+} \circ \Phi[/mm]
> und [mm]\Phi \circ \Phi^{+}[/mm] nur positive Eigenwerte haben?
>  

So ist es !


Es ist doch   $ [mm] (\Phi \circ \Phi^{+})(v) [/mm] = [mm] \lambda [/mm] v $

Wäre [mm] $\Phi^{+}(v) [/mm] = 0$, so wäre $ [mm] \lambda [/mm] v = 0$, also [mm] \lambda [/mm] = 0 oder v= 0, was aber beides nicht der Fall ist.

FRED

> Danke euch.


Bezug
                
Bezug
Eigenwert + Komposition: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Di 17.02.2009
Autor: visionmaster17

Danke.
Da hatte ich wohl Tomaten auf den Augen. :-)




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]