matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenvektoren berechnen!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenvektoren berechnen!
Eigenvektoren berechnen! < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren berechnen!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Di 14.07.2009
Autor: Mue

Aufgabe
Gesucht sind alle Eigenwerte und -räume der Matrix:
[mm] \pmat{ 0 & 0 & 6 \\ \bruch{1}{2} & 0 & 0 \\ 0 & \bruch{1}{3} & 0 } [/mm]

Nun habe ich die Eigenwerte bzw. den 3-fachen Wert [mm] \lambda = 1 [/mm]  ausgerechnet.
Ich gehe weiter zur Eigenvektorberechnung mit [mm]\lambda = 1: \pmat{ -1 & 0 & 6 \\ \bruch{1}{2} & -1 & 0 \\ 0 & \bruch{1}{3} & -1 } \* \vektor{x_{1} \\ x_{2} \\ x_{3}} = \vektor{0 \\ 0 \\ 0} [/mm]

Stell ich nun ein Lösungssystem auf fehlt mir die Idee, wie ich da Werte für für meine x rausbekommen soll, die nicht 0 sind. Die Lösung ist [mm]\vektor{6 \\ 3 \\ 1}[/mm], aber rechnerisch dahin zukommen verstehe ich nicht.

Mein Gleichungssystem sieht so aus:

[mm]-1x_{1} + 6x_{3} = 0[/mm]
[mm]\bruch{1}{2} x_{1} -1x_{2} = 0[/mm]
[mm]\bruch{1}{3} x_{2} -1x_{3} = 0[/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenvektoren berechnen!: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Di 14.07.2009
Autor: Mathe-Alfi

Hallo,

also wenn du in deinem Gleichungssystem z.B. [mm] x_{3}=t, [/mm] t  [mm] \in \IR [/mm] setzt, kannst du die anderen Werte in Abhängigkeit von t ausrechnen. Also bekommst du als Lösungsvektor(Eigenvektor):

v= [mm] \vektor{6 \\ 3 \\ 1 }*t [/mm] und für t kannst du dann alle Werte einsetzten.

Lg
Mathe-Alfi

Bezug
                
Bezug
Eigenvektoren berechnen!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:35 Di 14.07.2009
Autor: schachuzipus

Hallo,

> Hallo,
>  
> also wenn du in deinem Gleichungssystem z.B. [mm]x_{3}=t,[/mm] t  
> [mm]\in \IR[/mm] setzt, kannst du die anderen Werte in Abhängigkeit
> von t ausrechnen. Also bekommst du als
> Lösungsvektor(Eigenvektor):
>  
> v= [mm]\vektor{6 \\ 3 \\ 1 }*t[/mm] und für t kannst du dann alle
> Werte einsetzten.

außer $t=0$ [lol]

>  
> Lg
> Mathe-Alfi


Gruß

schachuzipus

Bezug
                
Bezug
Eigenvektoren berechnen!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:40 Di 14.07.2009
Autor: Mue

Aber wieso habe ich diese Freiheit einfach zu sagen [mm] x_{3} [/mm] is jetzt t?!
Sinn macht es, keine Frage.

Bezug
                        
Bezug
Eigenvektoren berechnen!: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Di 14.07.2009
Autor: schachuzipus

Hallo [mm] $\Mu$, [/mm]

> Aber wieso habe ich diese Freiheit einfach zu sagen [mm]x_{3}[/mm]
> is jetzt t?!
>  Sinn macht es, keine Frage.  

Bringe doch mal dein (korrektes) Gleichungssystem mit Gauß in Zeilenstufenform ...

Beginne zB. damit, das [mm] $\frac{1}{2}$-fache [/mm] der 1. Zeile zur 2. Zeile zu addieren

Den Rest siehst du dann.

Du bekommst eine Nullzeile, also ein LGS mit 2 Gleichungen in 3 Unbekannten, du kannst also 1 Variable (zB. [mm] $x_3$) [/mm] frei wählen ...


LG

schachuzipus

Bezug
                                
Bezug
Eigenvektoren berechnen!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:53 Di 14.07.2009
Autor: Mue

Ja, die Idee mit der 0-Zeile hatte ich öfters schon mal gelesen, allerdings ist bei den Aufgaben immer verlangt, nur Methoden zu benutzen, die bereits in der Vorlesung besprochen wurden. Leider konnte ich weder auf seinen Folien noch auf meinen Aufzeichnung diese Richtung erkennen. Deswegen war ich verunsichert.
Aber es ist wahrscheinlich nicht immer so, dass man eine Nullzeile finden kann und dann eine Variable frei wählt, oder?

Vielen Dank auf jedenfall.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]