matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenvektoren Orthogonal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenvektoren Orthogonal
Eigenvektoren Orthogonal < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren Orthogonal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 So 17.06.2012
Autor: mathenully

hallo,

ich hätte noch eine paar generelle fragen:

wenn ich 3 einfache Eigenwerte habe und habe den eigenvektor zum ersten und den eigenvektor zum zweiten eigenwert berechnet kann ich doch den dritten eigenvektor durch kreuzprodukt der beiden ersten berechnen oder?

ist hier eine vorraussetzung das die matrix symmetrisch ist oder geht das bei jeder matrix?

sind diese drei vektoren dann direkt othogonal zueinander? bzw.
sind eigenvektoren zu verschiedenen (einfachen) eigenwerten immer orthgonal zueinander?

vielen dank schon mal im vorraus!

        
Bezug
Eigenvektoren Orthogonal: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 So 17.06.2012
Autor: notinX

Hallo,

> hallo,
>  
> ich hätte noch eine paar generelle fragen:
>  
> wenn ich 3 einfache Eigenwerte habe und habe den
> eigenvektor zum ersten und den eigenvektor zum zweiten
> eigenwert berechnet kann ich doch den dritten eigenvektor
> durch kreuzprodukt der beiden ersten berechnen oder?

nein, das gilt allgemein nicht. Betrachte als Gegenbeispiel folgende Matrix:
[mm] $A=\left(\begin{array}{ccc} 2 & -3 & 1\\ 3 & 1 & 3\\ -5 & 2 & -4 \end{array}\right)$ [/mm]

>  
> ist hier eine vorraussetzung das die matrix symmetrisch ist
> oder geht das bei jeder matrix?

Bei einer symmetrischen Matrix stehen die Eigenvektoren orthogonal zueinander - das heißt aber nicht, dass man aus zwei gegebenen Eigenvektoren einen dritten berechnen kann.

>  
> sind diese drei vektoren dann direkt othogonal zueinander?
> bzw.

Welche drei und was ist "direkt orthogonal"?

>  sind eigenvektoren zu verschiedenen (einfachen)
> eigenwerten immer orthgonal zueinander?

Nein.

>  
> vielen dank schon mal im vorraus!

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]