matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenEigenvektoren, Hauptvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Eigenvektoren, Hauptvektoren
Eigenvektoren, Hauptvektoren < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren, Hauptvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:08 Sa 05.09.2009
Autor: basstscho

Aufgabe
Berechnen sie die Eigenvektoren und Hauptvektoren von
A = [mm] \pmat{ -2 & 0 & 0 \\ 2 & -6 & 4 \\ 1 & -4 & 2 } [/mm]

Hallo zusammen,

ich würde gerne wissen, ob mein Lösungsweg (hauptsächlich in Bezug auf den HV 2. Stufe) richtig ist.
EW ausrechnen => [mm] \lambda_{1,2,3} [/mm] = -2

EV: det(A- [mm] \lambda E)\vec{x}=0 [/mm]
=> [mm] v_{1} [/mm] = [mm] \alpha\vektor{0 \\ 1 \\ 1} [/mm]

HV 1. Stufe: det(A- [mm] \lambda E)\vec{x}=\vektor{0 \\ 1 \\ 1} [/mm]
=>  [mm] v_{2} [/mm] = [mm] \beta\vektor{0 \\ 0 \\ 1} [/mm]

HV 2. Stufe: det(A- [mm] \lambda E)\vec{x}=\vektor{0 \\ 0 \\ 1} [/mm]
=>  [mm] v_{3} [/mm] = [mm] \gamma\vektor{-2 \\ 0 \\ 1} [/mm]

Ich denke, dass ich den HV 1. Stufe noch richtig berechnet habe. Beim HV 2. Stufe bin ich mir nicht sicher. Normalerweise sollte ich ja den "gleichgesetzten" Vektor bei der Lösung wieder mit herausbekommen - das hab ich beim HV 2. Stufe leider nicht - hab ich was falsch gemacht? Falls mein Ansatz grundsätzlich richtig ist, kann ich auch gerne meine Rechenweg noch hinzufügen.

Vielen Dank für eure Hilfe,
Grüße Johannes


        
Bezug
Eigenvektoren, Hauptvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:16 Sa 05.09.2009
Autor: angela.h.b.


> Berechnen sie die Eigenvektoren und Hauptvektoren von
> A = [mm]\pmat{ -2 & 0 & 0 \\ 2 & -6 & 4 \\ 1 & -4 & 2 }[/mm]
>  
> Hallo zusammen,
>  
> ich würde gerne wissen, ob mein Lösungsweg
> (hauptsächlich in Bezug auf den HV 2. Stufe) richtig ist.
>  EW ausrechnen => [mm]\lambda_{1,2,3}[/mm] = -2

>  
> EV: det(A- [mm]\lambda E)\vec{x}=0[/mm]
>  => [mm]v_{1}[/mm] = [mm]\alpha\vektor{0 \\ 1 \\ 1}[/mm]

>  
> HV 1. Stufe: det(A- [mm]\lambda E)\vec{x}=\vektor{0 \\ 1 \\ 1}[/mm]
>  
> =>  [mm]v_{2}[/mm] = [mm]\beta\vektor{0 \\ 0 \\ 1}[/mm]

>  
> HV 2. Stufe: det(A- [mm]\lambda E)\vec{x}=\vektor{0 \\ 0 \\ 1}[/mm]
>  
> =>  [mm]v_{3}[/mm] = [mm]\gamma\vektor{-2 \\ 0 \\ 1}[/mm]

>  
> Ich denke, dass ich den HV 1. Stufe noch richtig berechnet
> habe. Beim HV 2. Stufe bin ich mir nicht sicher.

Hallo,

er ist richtig.

> Normalerweise sollte ich ja den "gleichgesetzten" Vektor
> bei der Lösung wieder mit herausbekommen

Es muß gelten [mm] (A_(-2)E)^2v_2=0 [/mm] und [mm] (A_(-2)E)^1v_2\not=0, [/mm]

und so hast Du's ja eingefädelt, indem Du den Kern von [mm] (A_(-2)E)^2 [/mm] berechnet hast und den Vektor so gewählt, daß er nicht im Kern von (A-(-2)E) liegt.

Gruß v. Angela



- das hab ich

> beim HV 2. Stufe leider nicht - hab ich was falsch gemacht?
> Falls mein Ansatz grundsätzlich richtig ist, kann ich auch
> gerne meine Rechenweg noch hinzufügen.
>  
> Vielen Dank für eure Hilfe,
>  Grüße Johannes
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]