matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenEigenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Eigenvektoren
Eigenvektoren < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren: rückfrage.
Status: (Frage) beantwortet Status 
Datum: 14:34 Mi 20.01.2010
Autor: Yuumura

Aufgabe
[mm] \pmat{ 0 & 0 & 0 \\ 0 & -1 & \bruch{1}{6} \\ 1 & 1 & -1 } [/mm]

Berechnen sie die Eigenvektoren.

So ich habe s´chon die Eigenwerte abgezogen und bin nun dabei die Eigenvektoren auszurechnen....

Ich habe x1 = 1 gesetzt, da es dort kein führendes Zeilenelement gibt in der ersten Zeile (andere haben X3 = 1 gesetzt, warum ? Wie kann man das sehen ?)

So, dann habe ich ja x2 = [mm] \bruch{1}{6} [/mm] x3

Also habe ich in die dritte gleichung x2 als [mm] \bruch{1}{6} [/mm] x3 aufgeschrieben und erhalte
1 + [mm] \bruch{1}{6} [/mm] x3 = x3

Habe nun auf beiden Seiten mit [mm] \bruch{1}{6} [/mm] x3 subtrahiert
und bekomme 1 = 5/6 x3

Was ist daran falsch ?



        
Bezug
Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Mi 20.01.2010
Autor: schachuzipus

Hallo Yuumura,

> [mm]\pmat{ 0 & 0 & 0 \\ 0 & -1 & \bruch{1}{6} \\ 1 & 1 & -1 }[/mm]
>  
> Berechnen sie die Eigenvektoren.
>  So ich habe s´chon die Eigenwerte abgezogen und bin nun
> dabei die Eigenvektoren auszurechnen....


>  
> Ich habe x1 = 1 gesetzt, da es dort kein führendes
> Zeilenelement gibt in der ersten Zeile (andere haben X3 = 1
> gesetzt, warum ? Wie kann man das sehen ?)

Nun, deine Matrix ist nicht in Zeilenstufenform. Tausche die Zeilen 1 und 3 mal, dann hast du:

[mm] $\pmat{1 & 1& -1 \\ 0 & -1 & \bruch{1}{6} \\ 0 & 0 & 0 }$ [/mm]

Nun kannst du es allgemein ausrechnen, indem du [mm] $x_3=t$ [/mm] mit [mm] $t\in\IR$ [/mm] setzt und dir am Ende ein geeignetes $t$ wählst, dass dir einen "schönen" (ganzzahligen) Eigenvektor liefert oder - wie du gemacht hast - direkt [mm] $x_3:=1$ [/mm] setzt ...


>  
> So, dann habe ich ja x2 = [mm]\bruch{1}{6}[/mm] x3
>  
> Also habe ich in die dritte gleichung x2 als [mm]\bruch{1}{6}[/mm]
> x3 aufgeschrieben und erhalte
>  1 + [mm]\bruch{1}{6}[/mm] x3 = x3
>  
> Habe nun auf beiden Seiten mit [mm]\bruch{1}{6}[/mm] x3 subtrahiert
>  und bekomme 1 = 5/6 x3
>  
> Was ist daran falsch ?
>  
>  


LG

schachuzipus

Bezug
                
Bezug
Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Mi 20.01.2010
Autor: Yuumura

Was bedeutet Zeilenstufenform und warum benötige ich das, und wann benötige ich das ? :D

Ist das sowas ?
x x x
0 x x
0 0 x  
?
Und müssen die X'e über der 0 jeweils 1 sein oder können sie eine beliebige Zahl sein?

Bezug
                        
Bezug
Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Mi 20.01.2010
Autor: schachuzipus

Hallo nochmal,

> Was bedeutet Zeilenstufenform und warum benötige ich das,
> und wann benötige ich das ? :D

Zum Lösen von Gleichungssystemen etwa.

Wie hier zur Bestimmung der Eigenvektoren ...

>  
> Ist das sowas ?
>  x x x
> 0 x x
>  0 0 x  
> ?

[ok]

Ganz recht, das ist die Zeilenstufenform. Du kannst jede Matrix mit dem Gaußschen Eliminationsverfahren in eine solche bringen.

Daneben gibt's auch die []reduzierte ZSF

Die "einfache" ZSF reicht aber, um die Lösung des zugeh. LGS durch Rückwärtseinsetzen zu bestimmen ...

>  Und müssen die X'e über der 0 jeweils 1 sein oder
> können sie eine beliebige Zahl sein?

Das kann eine beliebige Zahl sein ...



LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]