matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenEigenvektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Abbildungen und Matrizen" - Eigenvektoren
Eigenvektoren < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 23:18 So 24.09.2006
Autor: Hollyane

Hallo erstmal!!

Am Mittwoch ist es soweit und die gefürchtete Arbeit ist unumgänglich...;)
Hab da aber leider noch ein paar Fragen zu:

Wir haben zuletzt Punktspieglungen von linearen Abb. in Verbindung mit Vektoren besprochen. In dem Zusammenhang kamen wir dann immer auf die Eigenwerte ein linearen Abb. Nur was genau ist ein Eigenwert und Eigenvektor?

Wir haben da eine Def.: l(vektorU)= k* VektorU
k ist angeblich der Eigenwert, doch was sagt einen das?

Und was genau soll man sich unter einem Bildvektor vorstellen?  
Hoffe jemand kann mir da weiter helfen...





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:19 Mo 25.09.2006
Autor: leduart

Hallo Hollyane
> Hallo erstmal!!
>  
> Am Mittwoch ist es soweit und die gefürchtete Arbeit ist
> unumgänglich...;)
> Hab da aber leider noch ein paar Fragen zu:
>  
> Wir haben zuletzt Punktspieglungen von linearen Abb. in
> Verbindung mit Vektoren besprochen. In dem Zusammenhang
> kamen wir dann immer auf die Eigenwerte ein linearen Abb.
> Nur was genau ist ein Eigenwert und Eigenvektor?

Eine lineare Abbildung, oft gegeben durch eine Matrix, bildet alle Vektoren eines Raummes auf andere Vektoren ab.
Zu jedem Vektor “gehört“ dann sein Bild, der Bildvektor von vektor a ist also der Vektor lL(a).
Beim normalen Spiegel ist dir doch auch klar was das Bild (Spigelbild ist. und wenn du vor nem Spiegel stehst und ein Bündel Vektoren auf dich gemalt hast oder in der hand hälst kannst du die Bilder sogar sehen.
Bei einigen linearen Abbildungen werden Vektoren auf sich selbst abgebildet, oder auf Vielfache ihrer selbst. Beim Spigeln etwa werden die Vektoren, die auf dem Spiegel liegen auf sich selbst abgebildet, mit der selben Länge , also mit dem Eigenwert 1. Bei einer Dehnung in einer Richtung, gibt es Vektoren die z, Bsp, um dem faktor 2 verlängert werden, aber sonst weiter dieselbe Richtung haben, die haben den Eigenwert 2.
Vektoren, die senkrecht auf dem Spiegel stehen behalten die Richtung, bzw werden nur umgedreht, ihr Eigenwert ist  also -1.
Gruss leduart

Bezug
                
Bezug
Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Mo 25.09.2006
Autor: Hollyane

Ok, klingt sehr plausibel ;)
Ich habe in Mathe einfach nur immer das Problem, mir etwas vorzustellen. Und wenn ich mir das nicht richtig bildlich vorstellen kann, komme ich irgendwie nicht weiter...

Wie ist das ganze denn bei einer Projektion? Man hat also zwei Vektoren eines Dreiecks z.B. AB und AC und man behauptet, dass man AB auf AC projektiert.
Da wir das ganze nie in einem Raum gemacht haben, sondern immer in einer Ebene, kann ich mir schlecht vorstellen, was man da mit AB macht. "Legt" man den Vektor einfach auf AC, oder ist da wieder etwas mit einem Bild von einem Vektor.

Überhaupt: Mir will es einfach nicht in den Kopf...:( z.B den Punkt A in einem Dreieck an den Vektor BC spiegeln. An so elementaren Dingen scheitere ich schon.
Oder wenn man einfach die Matrix der Spiegelung an einer Geraden sucht. 5te Klasse Spiegelungen habe ich einfach nicht mehr drauf....

Wenn ich nerve, sagt Bescheid, aber bis Mittwoch gebe ich nicht auf...


Bezug
                        
Bezug
Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 Mo 25.09.2006
Autor: KnockDown

Ja das kenne ich (mit dem Vorstellen wollen), aber bei Vektoren kann man sich nur bis zu einem gewissen Grad etwas vorstellen. Wenn der vorstellebare Raum überschritten wird ist es damit aus.

Wollte ich nur mal sagen :)

Bezug
                                
Bezug
Eigenvektoren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:31 Di 26.09.2006
Autor: Hollyane

dann lass ich das mal mit dem vorstellen wollen..;)
Aber: Wenn man einen Vektor [mm] \vec{a} [/mm] verschiebt, dann erhält man ein Bild des Vektors [mm] (\vec{a}'). [/mm] Richtig? Was ist dann aber ein Urbild? (wieder der Ursprungsvektor?)

Noch eine Frage (hoffentlich die letzte):

Man sagt ja, das die Matrix von l, spaltenweise aus den Bildern der Einheitsvektoren [mm] \vec{e}1 [/mm] und  [mm] \vec{e}2 [/mm] besteht.
Nur was macht man dann mit dieser Formel:

[mm] l:\vektor{x \\ y}\to\pmat{ a & b \\ c & d }*\vektor{x \\ y} [/mm] ?





Bezug
                                        
Bezug
Eigenvektoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 28.09.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]