matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenvektor einer (nxn)-Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Eigenvektor einer (nxn)-Matrix
Eigenvektor einer (nxn)-Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor einer (nxn)-Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Mo 09.05.2011
Autor: Mathe-Lily

Aufgabe
a) Berechnen Sie die Determinante und die Eigenwerte der Telefonmatrix [mm] \pmat{ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 } [/mm] .
b) Berechnen Sie die Eigenwerte der folgenden oberen (nxn)-Dreiecksmatrix und geben Sie einen Eigenvektor zu einem Eigenwert Ihrer Wahl an:
[mm] \pmat{ a_{11} & a_{12} & ... & a_{1n} \\ 0 & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ 0 & ... & 0 &a_{nn} } [/mm] .

Hallo!
Aufgabe a) ist kein Problem. Das liegt bei Aufgabe b) dem 2. Teil:
Die Eigenwerte sind [mm] \lambda_{1}=a_{11}, \lambda_{2}=a_{22}, [/mm] ... , [mm] \lambda_{n}=a_{nn}. [/mm]
Auch die Gleichung für den Eigenraum bekommen wir hin:
[mm] \pmat{ a_{11} - \lambda & a_{12} & ... & a_{1n} \\ 0 & a_{22}-\lambda & ... & a_{2n} \\ ... & ... & ... & ... \\ 0 & ... & 0 &a_{nn}-\lambda } [/mm] * [mm] \vec{x} [/mm] = 0 .
Ich weiß auch, dass wenn ich [mm] \lambda_{1} [/mm] einsetze bekomme ich eine Null-Spalte und wenn ich [mm] \lambda_{n} [/mm] einsetze, bekomme ich eine Null-Zeile.
Nur: was bringt mir das? Wie komme ich zu meinem Eigenvektor? Und welches [mm] \lambda [/mm] wäre besser geeignet?
Grüßle und schon mal DANKE!!!

        
Bezug
Eigenvektor einer (nxn)-Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mo 09.05.2011
Autor: scherzkrapferl

damit du den eigenraum berechnen kannst musst du eigentlich nur die gleichung E(λ):=Kern(A-λ*I)

auf den Kern kommst du indem du zuerst (A-λ*I)*x=0 löst
was genau du mit der nullzeile und nullspalte meinst weiß ich nicht. (vermute jedoch dass der rang nicht voll ist)

wichtig ist ob welchen wert der Rang(A-λ*I) hat. daran erkennst du wie viele variablen du für deine werte setzen kannst. wenn der Rang zb um 2 kleiner als n (anzahl der zeilen) ist, kannst du n-2 variablen verwenden um dein gleichungssystem zu lösen. der eigenvektor sollte die form: v=(.,.,.)+s(.,.,.)+t(.,.,.) haben

falls du dann noch hauptvektoren errechnen willst funktioniert das mit: (A-λ*I)h=v


ps: ich setze mal vorraus das du alle grundlegenden begriffe der linearen algebra beherrscht und verstehst

Bezug
                
Bezug
Eigenvektor einer (nxn)-Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:09 Do 12.05.2011
Autor: Mathe-Lily

Danke :-)

Bezug
                        
Bezug
Eigenvektor einer (nxn)-Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 Do 12.05.2011
Autor: scherzkrapferl

hoffe du konntest dein problem durch meine anleitung lösen :-)

Bezug
        
Bezug
Eigenvektor einer (nxn)-Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Do 12.05.2011
Autor: fred97

Berechne mal

$ [mm] \pmat{ a_{11} & a_{12} & ... & a_{1n} \\ 0 & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ 0 & ... & 0 &a_{nn} } *\vektor{1 \\ 0 \\0 \\.\\ .\\ 0}$ [/mm]

Was kommt raus ? Bist Du zufrieden ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]