matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenvektor Matrix (Parameter)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Eigenvektor Matrix (Parameter)
Eigenvektor Matrix (Parameter) < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor Matrix (Parameter): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Di 04.01.2011
Autor: sh4nks

Aufgabe
[mm] \pmat{ a &0 & b \\ 0 & a & 0\\ b & 0 & a } [/mm]

Die Eigenwerte der Matrix seien 1, 6 und 11. Man bestimme reelle Zahlen, für die diese Aussage wahr ist.


Wie mache ich das? Ich habe die Matrix (A- Lambda x E) gebildet, die Determinante ausgerechnet und für Lambda die drei Eigenwerte 1, 6 und 11 eingesetzt.

Damit hat man 3 Gleichungen mit zwei Unbekannten- ich bekomme aber einen Widerspruch 'raus.

Wo liegt der Fehler und wie löst man das Problem?

Schon mal vielen Dank (:


Ich bin Erstposter und habe die Aufgabe zum ersten Mal hier gestellt.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Eigenvektor Matrix (Parameter): Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Di 04.01.2011
Autor: MathePower

Hallo sh4nks,


[willkommenmr]


> [mm]\pmat{ a &0 & b \\ 0 & a & 0\\ b & 0 & a }[/mm]
>  
> Die Eigenwerte der Matrix seien 1, 6 und 11. Man bestimme
> reelle Zahlen, für die diese Aussage wahr ist.
>  
> Wie mache ich das? Ich habe die Matrix (A- Lambda x E)
> gebildet, die Determinante ausgerechnet und für Lambda die
> drei Eigenwerte 1, 6 und 11 eingesetzt.


Das ist auch richtig so.


>  
> Damit hat man 3 Gleichungen mit zwei Unbekannten- ich
> bekomme aber einen Widerspruch 'raus.
>  
> Wo liegt der Fehler und wie löst man das Problem?


Ohne Deine bisherigen Rechenschritte können wir den Fehler nicht herausfinden.


>  
> Schon mal vielen Dank (:
>  
>
> Ich bin Erstposter und habe die Aufgabe zum ersten Mal hier
> gestellt.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Gruss
MathePower  

Bezug
                
Bezug
Eigenvektor Matrix (Parameter): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Di 04.01.2011
Autor: sh4nks

Aufgabe
Weitere Schritte:

det(A-λE)= (a-λ)³ - (a-λ)b² = (a-λ)² - b²

Eigenwerte sind 1,6,11
=> 3 Gleichungen:
I  a²- 2a +1    = b²
II a²- 12a +36  = b²
III a²- 22a +121= b²

I-II: a= 3,5  ; b²= 3,5² - 7 +1 =6,25

in III: 3,5² - 77 + 121 = 56,25... Widerspruch...

Bin wie bei der Frage formuliert vorgegangen und bekomme obigen Widerspruch, wieso?

Bezug
                        
Bezug
Eigenvektor Matrix (Parameter): Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Di 04.01.2011
Autor: Steffi21

Hallo, deine drei Gleichungen sind ok, setze I in III ein, a=..., aus I bekommst du dann [mm] b_1=... [/mm] und [mm] b_2=..., [/mm] dann überprüfen, ob II eine wahre Aussage gibt, jetzt klappt es, Steffi

Bezug
                        
Bezug
Eigenvektor Matrix (Parameter): Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Di 04.01.2011
Autor: MathePower

Hallo sh4nks,

> Weitere Schritte:
>  
> det(A-λE)= (a-λ)³ - (a-λ)b² = (a-λ)² - b²


>  
> Eigenwerte sind 1,6,11
>  => 3 Gleichungen:

>  I  a²- 2a +1    = b²
>  II a²- 12a +36  = b²
>  III a²- 22a +121= b²
>  
> I-II: a= 3,5  ; b²= 3,5² - 7 +1 =6,25
>  
> in III: 3,5² - 77 + 121 = 56,25... Widerspruch...
>  Bin wie bei der Frage formuliert vorgegangen und bekomme
> obigen Widerspruch, wieso?


Nun, offenbar sind hier Lösungen verlorengegangen.


Die Gleichungen, die Du zu berücksichtigen hast, lauten doch:

[mm]\left(a-1\right)^{3}-\left(a-1\right)*b^{2}=0[/mm]

[mm]\left(a-6\right)^{3}-\left(a-6\right)*b^{2}=0[/mm]

[mm]\left(a-11\right)^{3}-\left(a-11\right)*b^{2}=0[/mm]

Lasse diese Gleichungen unverändert,
und ermittle daraus a und b.


Gruss
MathePower

Bezug
                                
Bezug
Eigenvektor Matrix (Parameter): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Di 04.01.2011
Autor: sh4nks


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]