matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenEigenschaften von Relationen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Relationen" - Eigenschaften von Relationen
Eigenschaften von Relationen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften von Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 Di 27.11.2012
Autor: Neongelb

Aufgabe
Sei [mm] \le [/mm] eine Ordnung auf Y. Betrachten Sie die Relation [mm] \le [/mm] (dieses Zeichen ist etwas geschweift) auf X, die folgendermaßen gegeben sei: [mm] x_{1} \le [/mm] (geschweift) [mm] x_{2} [/mm] genau dann, wenn [mm] {f(x_{1}) \le f(x_{2})}. [/mm]

1. Entscheiden, ob [mm] \le [/mm] (geschweift) reflexiv, antisymmetrisch oder transitiv ist.
2. Für welche Abbildugen f ist [mm] \le [/mm] (geschweift) eine Ordnung auf X?

Hey, ich habe die Aufgabe zwar gelöst, jedoch bin ich mir sehr unsicher welchen Stellenwert das geschweifte [mm] \le [/mm] hat.

Meine Lösung:

zu 1. reflexiv, weil natürlich [mm] {f(x_{1}) \le f(x_{1})} [/mm] gilt, und somit auch [mm] x_{1} \le [/mm] (geschweift) [mm] x_{1} [/mm]

antisymmetrisch: Sei [mm] x_{1} \le [/mm] (geschweift) [mm] x_{2}, [/mm] so ist [mm] {f(x_{1}) \le f(x_{2})}. [/mm] Gilt auch [mm] {f(x_{2}) \le f(x_{1})}, [/mm] dann muss [mm] {f(x_{1}) = f(x_{2})} [/mm] sein und somit auch  [mm] x_{1} [/mm] = [mm] x_{2}. [/mm]

transitiv, da: Sei [mm] x_{1} \le [/mm] (geschweift) [mm] x_{2} [/mm] und [mm] x_{2} \le [/mm] (geschweift) [mm] x_{3}, [/mm] so ist [mm] {f(x_{1}) \le f(x_{2})} [/mm] und [mm] {f(x_{2}) \le f(x_{3})}. [/mm] Deshalb muss auch [mm] {f(x_{1}) \le f(x_{3})} [/mm] gelten und damit [mm] x_{1} \le [/mm] (geschweift) [mm] x_{3} [/mm]

Ist das soweit richtig?

Grüße

        
Bezug
Eigenschaften von Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Di 27.11.2012
Autor: Al-Chwarizmi


> Sei [mm]\le[/mm] eine Ordnung auf Y. Betrachten Sie die Relation [mm]\le[/mm]
> (dieses Zeichen ist etwas geschweift) auf X, die
> folgendermaßen gegeben sei: [mm]x_{1} \le[/mm] (geschweift) [mm]x_{2}[/mm]
> genau dann, wenn [mm]{f(x_{1}) \le f(x_{2})}.[/mm]
>  
> 1. Entscheiden, ob [mm]\le[/mm] (geschweift) reflexiv,
> antisymmetrisch oder transitiv ist.
>  2. Für welche Abbildugen f ist [mm]\le[/mm] (geschweift) eine
> Ordnung auf X?
>  Hey, ich habe die Aufgabe zwar gelöst, jedoch bin ich mir
> sehr unsicher welchen Stellenwert das geschweifte [mm]\le[/mm] hat.
>
> Meine Lösung:
>  
> zu 1. reflexiv, weil natürlich [mm]{f(x_{1}) \le f(x_{1})}[/mm]
> gilt, und somit auch [mm]x_{1} \le[/mm] (geschweift) [mm]x_{1}[/mm]
>  
> antisymmetrisch: Sei [mm]x_{1} \le[/mm] (geschweift) [mm]x_{2},[/mm] so ist
> [mm]{f(x_{1}) \le f(x_{2})}.[/mm] Gilt auch [mm]{f(x_{2}) \le f(x_{1})},[/mm]
> dann muss [mm]{f(x_{1}) = f(x_{2})}[/mm] sein und somit auch  [mm]x_{1}[/mm]
> = [mm]x_{2}.[/mm]
>  
> transitiv, da: Sei [mm]x_{1} \le[/mm] (geschweift) [mm]x_{2}[/mm] und [mm]x_{2} \le[/mm]
> (geschweift) [mm]x_{3},[/mm] so ist [mm]{f(x_{1}) \le f(x_{2})}[/mm] und
> [mm]{f(x_{2}) \le f(x_{3})}.[/mm] Deshalb muss auch [mm]{f(x_{1}) \le f(x_{3})}[/mm]
> gelten und damit [mm]x_{1} \le[/mm] (geschweift) [mm]x_{3}[/mm]
>  
> Ist das soweit richtig?
>  
> Grüße


Hallo Neongelb,

0.) das geschweifte Zeichen kann man so schreiben:

         [mm] $\preccurlyeq$ [/mm]      (drauf klicken !)

Ferner wären noch Präzisierungen zur Aufgabenstellung nötig:

1.) da der Begriff "Ordnungsrelation" (leider) nicht
einheitlich verwendet wird, sollte klar gestellt werden,
von welcher Definition hier ausgegangen werden soll.
Ich vermute, dass die Relation [mm] "\le" [/mm]  reflexiv, transitiv und
antisymmetrisch sein soll.
Ist das so richtig ?

2.) f soll offenbar eine Funktion von X nach Y sein (mit
Definitionsbereich X und mit Werten in Y)

Die Frage ist also eigentlich, ob eine (Halb-) Ordnung
auf einer Menge Y durch eine Funktion  $\ [mm] f:X\to [/mm] Y$  auf
eine Menge X "vererbt" werden kann.


Im Übrigen sind deine Überlegungen o.k.

LG,    Al-Chw.

Bezug
                
Bezug
Eigenschaften von Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Di 27.11.2012
Autor: Neongelb

Okay. Ja, sorry ganz oben steht noch, dass f: X [mm] \to [/mm] Y. Ich denke mit [mm] \le [/mm] ist eine übliche Kleiner-Gleich-Relation also einer Halbordnung gemeint. Also geht meine Lösung in die richtige Richtung?

Hast du mir ebentuell noch einen Tipp zu Aufgabe 2? Da komme ich nicht wirklich voran.

Danke schonmal.
Grüße

Bezug
                        
Bezug
Eigenschaften von Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Di 27.11.2012
Autor: Al-Chwarizmi


> Okay. Ja, sorry ganz oben steht noch, dass f: X [mm]\to[/mm] Y. Ich
> denke mit [mm]\le[/mm] ist eine übliche Kleiner-Gleich-Relation
> also einer Halbordnung gemeint. Also geht meine Lösung in
> die richtige Richtung?

Ja, sicher.
  

> Hast du mir ebentuell noch einen Tipp zu Aufgabe 2? Da
> komme ich nicht wirklich voran.

Da muss man nochmals die Frage stellen:

Was genau soll denn mit dem Begriff "Ordnung"
gemeint sein ?

Kannst du das mal noch - anhand deines Skripts - exakt abklären ?

LG,   Al-Chw.

Bezug
        
Bezug
Eigenschaften von Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Mi 28.11.2012
Autor: tobit09

Hallo Neongelb,


> antisymmetrisch: Sei [mm]x_{1} \le[/mm] (geschweift) [mm]x_{2},[/mm] so ist
> [mm]{f(x_{1}) \le f(x_{2})}.[/mm] Gilt auch [mm]{f(x_{2}) \le f(x_{1})},[/mm]
> dann muss [mm]{f(x_{1}) = f(x_{2})}[/mm] sein und somit auch  [mm]x_{1}[/mm]
> = [mm]x_{2}.[/mm]

Die letzte Folgerung, dass [mm] $x_1=x_2$ [/mm] gelte, stimmt im Allgemeinen nicht. Sie stimmt nur, falls f eine bestimmte Eigenschaft hat...


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]