matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenEigenschaften von Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Eigenschaften von Matrizen
Eigenschaften von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften von Matrizen: Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 21:04 Do 22.07.2010
Autor: Omiklan

Aufgabe
Es seien A aus M(nxn, [mm] \IQ) [/mm] eine nxn-Matrix mit der Eigenschaft:
Es gibt ein m aus N mit [mm] A^{m} [/mm] = 2A + 2E, wobei E die Einheitsmatrix ist.

Zeigen Sie: m <= n

Ich finde überhaupt keinen Ansatz. Suche nach Tipps und Eigenschaften, die mir weiterhelfen.

Sollte keine Lösung sein, sondern Denkanstöße und Richtung (Bsp. Satz xy, wird dir weiterhelfen, folgende Eigenschaft (Rechenregel, sollte dir helfen)

Speziell, warum den Körper [mm] \IQ. [/mm] Meiner Erfahrung nach sollte ich dessen Eigenschaften in die Lösung miteinbringen.

Über Vorschläge wäre ich sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenschaften von Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 Fr 23.07.2010
Autor: wieschoo

Wollte nur anmerken, das nach Cayley Hamilton eine Folgerung ist:
Die Potenzen von A spannen einen Untervektorraum auf, der höchstens die Dimension n hat.
Damit wäre auf jeden Fall m<=n+1

Bin mir jetzt aber nicht sicher, ob sogar schon m<=n deshalb gilt.

Bezug
        
Bezug
Eigenschaften von Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 So 25.07.2010
Autor: angela.h.b.


> Es seien A aus M(nxn, [mm]\IQ)[/mm] eine nxn-Matrix mit der
> Eigenschaft:
>  Es gibt ein m aus N mit [mm]A^{m}[/mm] = 2A + 2E, wobei E die
> Einheitsmatrix ist.
>  
> Zeigen Sie: m <= n

Hallo,

[willkommenmr].

Ich glaube, man kann es so machen:

Wir betrachten das Polynom [mm] p\in \IZ[x] [/mm] mit [mm] p(x):=x^m-2x-2. [/mm]

Es ist p(A)=0,
also teilt das Minimalpolynom [mm] \mu_A [/mm] von A das Polynom p.

p ist irreduzibel über [mm] \IQ, [/mm]
also ist p das Minimalpolynom,
woraus folgt, daß der Grad von p  [mm] \le [/mm] n ist.

Gruß v. Angela









Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]