matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenEigenschaften Relationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Relationen" - Eigenschaften Relationen
Eigenschaften Relationen < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Di 05.11.2013
Autor: Desaster3

Aufgabe
Seien A [mm] \not= \emptyset [/mm] R:= [mm] \emptyset \subseteq [/mm] A x A. Ist R reflexiv, symmetrisch, anti-symmetrisch oder transitiv?
Begründen Sie Ihre Antwort.

Guten Abend zusammen,

ich habe eine Aufgabe, wo ich mir nicht sicher bin, ob ich da so auf dem richtigen Weg bin und bitte um Eure Unterstützung.

Aufgabe 1
Ich weiß was reflexiv, symmetrisch, anti-symmetrisch und transitiv ist. Ich habe das ganze versucht mit Beispielwerten zu lösen.
A = {1,2}
A x A = {(1,1), (2,2), (1,2), (2,1)}
Reflexiv: Nein, da nicht jedes Objekt zu sich äquivalent ist.
Symmetrisch: Ja
Transitiv: Nein

Vielen Dank!
LG
Tim

        
Bezug
Eigenschaften Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Di 05.11.2013
Autor: Al-Chwarizmi


> Seien    A [mm]\not= \emptyset[/mm]   und     R:= [mm]\emptyset \subseteq[/mm] A x A.
> Ist  R reflexiv, symmetrisch, anti-symmetrisch oder transitiv?
>  Begründen Sie Ihre Antwort.
>  Guten Abend zusammen,
>  
> ich habe eine Aufgabe, wo ich mir nicht sicher bin, ob ich
> da so auf dem richtigen Weg bin und bitte um Eure
> Unterstützung.
>  
> Aufgabe 1
>  Ich weiß was reflexiv, symmetrisch, anti-symmetrisch und
> transitiv ist. Ich habe das ganze versucht mit
> Beispielwerten zu lösen.
>  A = {1,2}
>  A x A = {(1,1), (2,2), (1,2), (2,1)}
>  Reflexiv: Nein, da nicht jedes Objekt zu sich äquivalent
> ist.   [haee]

Was meinst du da mit "äquivalent" ?

>  Symmetrisch: Ja

warum ?

>  Transitiv: Nein

warum ?
  

> Vielen Dank!
>  LG
>  Tim


Hallo Tim,

wenn ich die Aufgabenstellung richtig verstanden habe,
ist R die "leere" Relation auf einer nicht-leeren Menge A.
Dies bedeutet, dass es zwar mindestens ein Element
in A gibt, dass aber kein Element von A zu irgendeinem
Element von A in der Relation R steht.

Nimm nun also die exakten Definitionen der Eigenschaften
"reflexiv", symmetrisch" etc. her  (ganz wichtig sind dabei
die jeweiligen Voraussetzungen !!)  und prüfe sie darauf,
ob sie erfüllt sind, wenn es eben gar kein Paar [mm] (x,y)\in [/mm] A x A
mit  [mm] (x,y)\in{R} [/mm] gibt.
Wie in der Aufgabenstellung steht, genügen die nackten
Antworten wie "ja" oder "nein" nicht, sondern es werden
Begründungen verlangt.

LG ,   Al-Chw.


Bezug
        
Bezug
Eigenschaften Relationen: "äquivalent"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:32 Di 05.11.2013
Autor: Al-Chwarizmi


>  Ich weiß was reflexiv, symmetrisch, anti-symmetrisch und
> transitiv ist.

.....

>  Reflexiv: Nein, da nicht jedes Objekt zu sich äquivalent ist.



Ich kann mir da eine kleine Nebenbemerkung nicht gut
verkneifen:

So rein mathematisch gesehen fällt es etwas schwer,
sich Objekte vorzustellen, die nicht zu sich selber
äquivalent sind, also z.B. Zahlen x mit [mm] x\not=x [/mm] oder
Dreiecke, die zu sich selber nicht kongruent sind.

Mir persönlich ist es zwar auch immer wieder passiert,
dass ich unter meinem eigentlichen Wert eingeschätzt
wurde (also eben nicht äquivalent ...)    ;-)

LG ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]