matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEigenraeume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Eigenraeume
Eigenraeume < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenraeume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Di 10.07.2012
Autor: silfide

Aufgabe
Sei f: [mm] \IR_{\le2}[x]\mapsto \IR_{\le2}[x], p(x)\mapsto x^{2} [/mm] p''(x)-2p(x)

Finden Sie alle Eigenwerte auf Eigenraeume auf f.

Sei Basis [mm] B:={1,x,x^{2}} [/mm]

Hey Leute,

habe eine Frage zur obigen Frage (stammt aus der Vorlesung von heute)

[mm] [f]_{B,B}=\pmat{ -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0} [/mm]

Mit [mm] P_{A}(\lambda)=det(\lambda I_{n} [/mm] - [mm] [f]_{B,B}) [/mm]
folgt [mm] \lambda_{1}=-2 [/mm] und [mm] \lambda_{2}=0 [/mm]

Nun soll fuer [mm] \lambda_{1}=-2 [/mm] folgen, dass eine Basis des Eigenraums ist {1,x}  


Nun soll fuer [mm] \lambda_{2}=0 [/mm] folgen, dass eine Basis des Eigenraums ist { [mm] x^{2} [/mm] }  


Aber wenn ich dass nachrechne, kommt bei mir genau das Gegenteil raus, also

Fuer [mm] \lambda_{1}=-2 [/mm] folgen, dass eine Basis des Eigenraums ist  { [mm] x^{2} [/mm] }


Fuer [mm] \lambda_{2}=0 [/mm] folgen, dass eine Basis des Eigenraums ist  {1,x}


Weiss jemand was ich falsch gemacht habe??
(Eigenraumbestimmug uebers charakteristische Polynom)

Silfide

        
Bezug
Eigenraeume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Di 10.07.2012
Autor: silfide

Okay, alles nochmal ueberdacht ... und nun habe ich es doch ...

Hat sich also erledigt!

Bezug
        
Bezug
Eigenraeume: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Di 10.07.2012
Autor: fred97


> Sei f: [mm]\IR_{\le2}[x]\mapsto \IR_{\le2}[x], p(x)\mapsto x^{2}[/mm]
> p''(x)-2p(x)
>  
> Finden Sie alle Eigenwerte auf Eigenraeume auf f.
>  
> Sei Basis [mm]B:={1,x,x^{2}}[/mm]
>  Hey Leute,
>  
> habe eine Frage zur obigen Frage (stammt aus der Vorlesung
> von heute)
>  
> [mm][f]_{B,B}=\pmat{ -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0}[/mm]
>  
> Mit [mm]P_{A}(\lambda)=det(\lambda I_{n}[/mm] - [mm][f]_{B,B})[/mm]
>  folgt [mm]\lambda_{1}=-2[/mm] und [mm]\lambda_{2}=0[/mm]
>  
> Nun soll fuer [mm]\lambda_{1}=-2[/mm] folgen, dass eine Basis des
> Eigenraums ist {1,x}  
>
>
> Nun soll fuer [mm]\lambda_{2}=0[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

folgen, dass eine Basis des

> Eigenraums ist { [mm]x^{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}  


Das stimmt.


>
>
> Aber wenn ich dass nachrechne, kommt bei mir genau das
> Gegenteil raus, also
>
> Fuer [mm]\lambda_{1}=-2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

folgen, dass eine Basis des Eigenraums

> ist  { [mm]x^{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>
>
> Fuer [mm]\lambda_{2}=0[/mm] folgen, dass eine Basis des Eigenraums
> ist  {1,x}
>  
>
> Weiss jemand was ich falsch gemacht habe??

Nein. Das kann Dir niemand sagen, denn Deine Rechnungen hast Du verschwiegen.

FRED

>  (Eigenraumbestimmug uebers charakteristische Polynom)
>  
> Silfide


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]