Eigenfunktionen von Operatoren < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:33 Do 03.08.2017 | Autor: | Hikari |
Eigenvektoren zu Eigenwerten dürfen nicht 0 sein. Wie sieht das jetzt im Falle von Eigenfunktionen aus?Duerfen sie nur nicht konstant nicht 0 sein oder duerfen sie nirgendwo 0 sein? Zweiteres ergibt gedanklich nicht so viel Sinn für mich, da ich ja dann keine Eigenfunktionen zu Operatoren finden koennte, die ich auf Funktionen anwende, die 0 sein koennen.
Aber ich finde in der Literatur nichts konkretes dazu, das mir das oder das Gegenteil sagt und bin daher unsicher.
|
|
|
|
Ein Eigenvektor muss im betrachteten Vektorraum verschieden vom Nullvektor sein. Im [mm]\IR^n[/mm] bedeutet das, dass mindestens eine Komponente [mm]\ne 0[/mm] ist.
In einem Funktionenraum heißt das analog, dass eine Eigenfunktion verschieden von der Nullfunktion, aber nicht überall [mm]\ne 0[/mm] sein muss.
Zu beachten ist, dass in einigen Funktionenräumen wie z.B. in den [mm]L^p[/mm]-Räumen eine Funktion nur dann ungleich dem Nullvektor ist, wenn sie auf einer Menge von positivem Maß ungleich Null ist.
|
|
|
|