matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikEichtrafo für gegebene Welle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "HochschulPhysik" - Eichtrafo für gegebene Welle
Eichtrafo für gegebene Welle < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eichtrafo für gegebene Welle: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:17 So 19.05.2013
Autor: nhard

Aufgabe
Gegeben ist die ebene Welle im Vakuum:
[mm] $$\vec E(\vec [/mm] x, [mm] t)=\text{Re}\left(\vec a e^{i\left(\vec q\vec x-\omega t\right)}\right)$$ [/mm]
[mm] $$\vec B(\vec x,t)=\frac{\vec q}{\omega(\vec q)}\times \vec E(\vec [/mm] x,t)$$
mit [mm] $\vec q\vec E=0;\quad \omega=qc_0;\quad \vec [/mm] a [mm] \in C^{3}$ [/mm]

Finde verschiedene Vektor- und Skalarpotentiale in
a) der Coulomb-Eichung [mm] ($\nabla \vec [/mm] A=0$)
b) in der Lorenz-Eichung [mm] ($\nabla\vec A+\epsilon_0\mu_0\frac{\partial \Phi}{\partial t}=0$) [/mm]

Hallo Forum,

bei dieser Aufgabe bin ich mir sehr unsicher, wie man diese zu Lösen hat... Ich versuche mal meinen Gedanken zur b) darzustellen (wenn b) klar ist sollte ich die a) hoffentlich schaffen):

Meine Idee:
Ich versuche erstmal allg. das Vektor- und Skalarpot. für die Lorenzeichung zu berechnen und dann die auftretenden Größen mit den Größen für das E-Feld in der Aufgabenstellung zu identifizieren.

Ich fange also an, das Vektorpotential und das Skalarpotential über die Maxwellgeleichungen in Relation zu setzen und erhalt dann mit der Lorenzeichung zwei Differentialgleichungen (im Vakuum):
[mm] $$\Delta \vec A-\mu_0\epsilon_0\frac{\partial ^2}{\partial t^2}\vec [/mm] A=0$$
[mm] $$\Delta \Phi-\epsilon_0\mu_0\frac{\partial^2 \Phi}{\partial t^2}=0$$ [/mm]

Mit der Lösung (die 2. lin. unabhängigen Lösungen lasse ich gleich weg und die einzelnen Variablen nenne ich für beide Potentiale gleich, da sich das mMn sofort aus der Lorenzeichung ergeben würde):

[mm] $$\vec A=\vec [/mm] c [mm] e^{i(\vec k\vec x-\omega't)}$$ [/mm]
[mm] $$\Phi=de^{i(\vec k\vec x-\omega't)}$$ [/mm]
mit [mm] $\omega'=kc_0$. [/mm] Jetzt schaue ich, dass die beiden Potentiale die Lorentzeichung [mm] $\nabla\vec A+\epsilon_0\mu_0\frac{\partial \Phi}{\partial t}=0$ [/mm] erfüllen:
[mm] $$i\vec [/mm] c [mm] \vec [/mm] k [mm] e^{i(\vec k\vec x-\omega' t)}-i\epsilon_0\mu_0\omega' [/mm] d [mm] e^{i(\vec k\vec x-\omega' t)}\overset{!}{=}0$$ [/mm]

woraus folgt, dass [mm] $$d=\frac{\vec c\vec k}{\epsilon_0\mu_0 \omega'}=\frac{\vec c\vec k c_0}{k}$$ [/mm]

Das elektrische Feld errechnet sich nach
[mm] \begin{matrix} \vec E&=&-\nabla \Phi-\frac{\partial }{\partial t}\vec A\\ &=&-i\frac{(\vec c\vec k)\vec k c_0}{k}e^{i(\vec k\vec x-\omega' t)}+i\vec c\omega'e^{i(\vec k\vec x-\omega t)}\\ &=& i\left(\vec c\omega'-\frac{(\vec c\vec k)\vec kc_0}{k}\right)e^{i(\vec k\vec x-\omega't)} \end{matrix} [/mm]
Daraus würde ich jetzt ablesen:

[mm] $$\vec a=i\left(\vec c\omega'-\frac{(\vec c\vec k)\vec kc_0}{k}\right)$$ [/mm] und [mm] $\vec k=\vec q;\quad \omega'=\omega$ [/mm]


---
Leider weiß ich nicht, wie sinnvoll das ganze war...weil ich irgendwie erst die Eichung benutzt habe um auf die DGLs zu kommen und dann das ganze wieder rückwärts gerechnet habe um das [mm] $\vec [/mm] E$-Feld zu berechnen...


Vielen Dank schonmal!




        
Bezug
Eichtrafo für gegebene Welle: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 21.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]