matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikEffektiver Zinssatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Finanzmathematik" - Effektiver Zinssatz
Effektiver Zinssatz < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Effektiver Zinssatz: Idee?
Status: (Frage) beantwortet Status 
Datum: 16:46 Mi 18.07.2018
Autor: timmexD

Aufgabe
Wie hoch dürfte der nominelle Jahreszinssatz für dieses Darlehen höchsten sein, wenn Max einen effektiven Jahreszinssatz von 9% p.a. haben möchte bei diesen Konditionen: Darlehen im Höhe von 12000 Euro mit einer Laufzeit von 4 Jahren und einem Damnum 4,5 %. Hierbei gelte die exponentielle Verzinsung.

Guten Tag!

Ich habe zu dieser Aufgabe nur eine kurze Frage, da ich mir nicht sicher bin, ob diese Formel immer gilt: Effektiver Jahreszinssatz= Kreditkosten x 100 / (Laufzeit x Auszahlungsbetrag). Darf ich in diesem Fall diese Formel anwenden oder muss ich den effektiven Zinssatz auch exponentiell verzinsen?

Ich wäre sehr dankbar, wenn mir das jemand erklären könnte.

Vielen Dank!

Tim


        
Bezug
Effektiver Zinssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mi 18.07.2018
Autor: HJKweseleit


> Wie hoch dürfte der nominelle Jahreszinssatz für dieses
> Darlehen höchsten sein, wenn Max einen effektiven
> Jahreszinssatz von 9% p.a. haben möchte bei diesen
> Konditionen: Darlehen im Höhe von 12000 Euro mit einer
> Laufzeit von 4 Jahren und einem Damnum 4,5 %. Hierbei gelte
> die exponentielle Verzinsung.

Heißt offensichtlich: Zinseszins-Rechnung.

Wie sieht nun der gesamte Vorgang aus?
  
Die Bank gewährt 12.000 €.
Sie zieht aber sofort 4,5% = 540 € ab.
Am Ende des ersten, 2., 3. und 4. Jahres zahlst du jeweils die Zinsen für 12.000 €, also immer den selben Betrag a.
Dann zahlst du die 12.000 € zurück.

Die Effektivzins-Berechnung mit 9 % ergibt sich damit so:

Du bekommst von der Bank 11.460 €.
Nach einem Jahr fallen 9 % Zinsen an, du hast 11.460 € * 1,09 Schulden.
Du zahlst aber den Betrag a ein und hast nur noch 11.460 € * 1,09 - a Schulden.
Am Ende des zweiten Jahres kommen wieder 9 % hinzu, du hast dann (11.460 € * 1,09 - a)*1,09 Schulden, zahlst wieder a ein und hast (11.460 € * 1,09 - a)*1,09 - a Schulden zu Beginn des 3. Jahres.
Am Ende des Dritten Jahres kommen wieder 9 % hinzu und du zahlst a ein, hast dann noch ((11.460 € * 1,09 - a)*1,09 - a)*1,09 - a Schulden, am Ende des 4. Jahres entsprechend (((11.460 € * 1,09 - a)*1,09 - a)*1,09 - a)*1,09-a.
Das sind dann genau die 12.000 € Schulden, die du jetzt der Bank zurückzahlst, um dann auf 0 zu stehen.

Also musst du die Gleichung lösen:

(((11.460 € * 1,09 - a)*1,09 - a)*1,09 - a)*1,09-a = 12.000


Nehmen wir mal an, a wäre 913,32 €. Das wären dann die Nominalzinsen für 12.000 €, also 7,611 %.


Aus dem Beispiel lässt sich auch eine (nicht ganz harmlose) Formel entwickeln.

K=Nominales Kapital,                  hier 12.000 €
E=Effektiv-Faktor,                    hier 1,09
A=Auszahlungsfaktor,                  hier 0,955
N=gesuchter Nominalzinssatzfaktor,    hier angenommene 0,07611
J=Anzahl der Jahre                    hier J=4

Dann sieht obige Rechnung abstrakt so aus:

(((K*A*E-K*N)*E-K*N)*E-K*N)*E-K*N=K   Die Klammern der Reihe nach ausgerechnet gibt das

   [mm] K*A*E^2-K*N*E-K*N [/mm]
   [mm] K*A*E^3-K*N*E^2-K*N*E-K*N [/mm]
   [mm] K*A*E^4-K*N*E^3-K*N*E^2-K*N*E-K*N [/mm]  und damit die Gleichung

[mm] K*A*E^4-K*N*E^3-K*N*E^2-K*N*E-K*N=K [/mm]   |:K

[mm] A*E^4-N*E^3-N*E^2-N*E-N=1 [/mm]

Für J Jahre sähe das dann so aus:

[mm] AE^J-NE^{J-1}-NE^{J-2}-NE^{J-3}...-NE-N [/mm] = 1 oder umgestellt:

[mm] AE^J-1 [/mm] = [mm] NE^{J-1}+NE^{J-2}+NE^{J-3}...+NE-N [/mm] = (geom. Reihe) [mm] N\bruch{E^J-1}{E-1}. [/mm]

Daraus erhält man nun sofort

N = [mm] \bruch{AE^J-1}{E^J-1}*(E-1). [/mm]

Du kannst mal obige Zahlen einsetzen, und wenn du dich nicht verrechnest...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]