matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbenengleichungen umformen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Ebenengleichungen umformen
Ebenengleichungen umformen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenengleichungen umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 So 21.05.2006
Autor: verteh_nix

Hallo,
ich hab mir so ein paar Gedanken gemacht und jetzt wollte ich mal schauen ob ich das richtig vestanden hab-
wenn ich eine Normalenform habe (4/1/2)* [mm] \vec{x}=23 [/mm]
lautet dann die Koordinatenform 4x+y+2z=23 ???
Und noch ein Beispiel E: (4/-2/-4) [mm] *\vec{x}=36 [/mm]
um jetzt auf die Parameterform zu kommen, kann ich den Normalenvektor als Punktvektor nehmen und für die beiden Rchtungsvektoren einfach Vektoren suchen deren Skalarprodunkt mit dem Punktvektor null ergibt-also zum Beispiel:  (4/-2/-4)+ [mm] \lambda*(4/0/4)+ \mu*(0/-8/4) [/mm] ???

Freu mich über eine Antwort!!!

        
Bezug
Ebenengleichungen umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 So 21.05.2006
Autor: M.Rex


> Hallo,
>  ich hab mir so ein paar Gedanken gemacht und jetzt wollte
> ich mal schauen ob ich das richtig vestanden hab-
>  wenn ich eine Normalenform habe (4/1/2)* [mm]\vec{x}=23[/mm]
>  lautet dann die Koordinatenform 4x+y+2z=23 ???

yep, dae ergibt sich aus dem Skalarprodukt

>  Und noch ein Beispiel E: (4/-2/-4) [mm]*\vec{x}=36[/mm]
>  um jetzt auf die Parameterform zu kommen, kann ich den
> Normalenvektor als Punktvektor nehmen und für die beiden
> Rchtungsvektoren einfach Vektoren suchen deren
> Skalarprodunkt mit dem Punktvektor null ergibt-also zum
> Beispiel:  (4/-2/-4)+ [mm]\lambda*(4/0/4)+ \mu*(0/-8/4)[/mm] ???
>

Auch richtig, achte nur darauf, dass deine Richtungsvektoren nicht parallel sind

> Freu mich über eine Antwort!!!

Marius

Bezug
        
Bezug
Ebenengleichungen umformen: Beispiel
Status: (Antwort) fertig Status 
Datum: 11:44 Di 23.05.2006
Autor: M.Rex

Hallo,


Hier ist ein Beispiel:

[mm] \vektor{1 \\ 1 \\ 1} [/mm] * [mm] \vec{x} [/mm] = 0 [mm] \gdw {x_{1} + x_{2} +x_{3}} [/mm] = 0 .
Wähle jetzt z.B. [mm] x_{1} [/mm] = 1, und [mm] x_{2} [/mm] = -1, so erhältst du [mm] x_{3} [/mm] = 0.
Das ist dann dein gesuchter Vektor [mm] \vec{x}. [/mm]

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]