matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbenengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Ebenengleichung
Ebenengleichung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Mi 26.05.2010
Autor: tj92

Es sei eine Koordinatengleichung einer Ebene gegeben: 2x-z=5
Folglich besitzt die Ebene einen Achsenabschnitt bei x=2,5 und z=-5,- ein y-Achsenabschnitt ist nicht vorhanden. Die Ebene ist also parallel zur y-Achse. Ich besitze schließlich zwei Punkte der Ebene: A(2,5/0/0) und C(0/0/-5). Allerdings brauche ich, um eine Parametergleichung dieser Ebene aufzustellen, 3 Punkte, habe aber nur 2...was nun?

        
Bezug
Ebenengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Mi 26.05.2010
Autor: schachuzipus

Hallo,

> Es sei eine Koordinatengleichung einer Ebene gegeben:
> 2x-z=5
>  Folglich besitzt die Ebene einen Achsenabschnitt bei x=2,5
> und z=-5,- ein y-Achsenabschnitt ist nicht vorhanden. Die
> Ebene ist also parallel zur y-Achse. Ich besitze
> schließlich zwei Punkte der Ebene: A(2,5/0/0) und
> C(0/0/-5). Allerdings brauche ich, um eine
> Parametergleichung dieser Ebene aufzustellen, 3 Punkte,
> habe aber nur 2...was nun?


Denke dir einen dritten Punkt aus.

Nimm beispielsweise $x=2$

Wie kannst du $y,z$ wählen, so dass die Ebenengleichung erfüllt ist?

Gruß

schachuzipus

Bezug
                
Bezug
Ebenengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Mi 26.05.2010
Autor: tj92

Das verstehe ich leider nicht...wieso soll ich mir einen Punkt einfach ausdenken,- geht das?



Bezug
                        
Bezug
Ebenengleichung: unendlich viele Punkte
Status: (Antwort) fertig Status 
Datum: 15:48 Mi 26.05.2010
Autor: Roadrunner

Hallo tj92!


Immerhin besteht eine Ebene aus unendlich vielen Punkten. Dabei werden auch einige dabei sein, die z.B. den x-Wert $x \ = \ 2$ haben.

Daher kannst Du diesen in die Ebenengleichung einsetzen und daraus $z_$ ermitteln.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]