matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbenengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Ebenengleichung
Ebenengleichung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenengleichung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:52 Mi 23.04.2008
Autor: Jule_

Aufgabe
Prüfen sie ob die beiden Geraden sich schneiden. Gbenen Sie, falls möglich, eine Ebenengleichung an die eindeitig durch diese geraden festgelegt wird.

[mm] g_1: \vec{x}=\vektor{1 \\ 1 \\ 2}+ t*\vektor{2 \\ 3 \\ 1} [/mm]

[mm] g_2: \vec{x}=\vektor{3 \\ 4 \\ 3}+ s*\vektor{1 \\ 0 \\ 1} [/mm]

Ich habe die Geraden gleichgesetzt und eine Losung für t und r gefunden d.h. die Geraden schneiden sich.

Weiter bin ich allerdings nicht gekommen. Mir ist allerdings die bzw. eine mögliche Lösung bekannt:

[mm] E:\vec{x}=\vektor{3 \\ 4 \\ 3}+ r*\vektor{1 \\ 0 \\ 1}+r*\vektor{2 \\ 3 \\ 1} [/mm]

Mir ist dabei aufgefallen, dass es sich beim Stützvektor [mm] \vec{p} [/mm] um den der 2. Geradenkleichung handelt und die Spannvektoren die Richtungsvektoren beider Geraden sind. Das leuchtet mir ein, aber hätte ich auch [mm] \vec{p} [/mm] von der 1. Geradengleichung nehmen können um die Ebenengleichung darzustellen?


        
Bezug
Ebenengleichung: Schnittpunkt als Stützpunkt
Status: (Antwort) fertig Status 
Datum: 16:55 Mi 23.04.2008
Autor: Loddar

Hallo Jule!


Ich habe es nin nicht nachgerechnet. Aber als Stützvektor der gesuchten Ebene musst Du den Schnittpunkt der beiden Geraden verwenden.


Gruß
Loddar


Bezug
                
Bezug
Ebenengleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:15 Mi 23.04.2008
Autor: Jule_


> Hallo Jule!
>  
>
> Ich habe es nin nicht nachgerechnet. Aber als Stützvektor
> der gesuchten Ebene musst Du den Schnittpunkt der beiden
> Geraden verwenden.
>  
>
> Gruß
>  Loddar

Ja, dass hatte ich mir auch gedacht, dass ich die Koordinaten des Schnittpunktes nehmen muss. War nur verwirrt, dass gleich bei 3 Lösungen von Aufgaben immer [mm] \vec{p} [/mm] der Ebenengleichung dem der 2. Geraden entspricht.

Habe es durchgerechnet und die Koordinaten des Schnitt Punktes sind
[mm] \vektor{3 \\ 4 \\3} [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]