matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungEbenen und Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Ebenen und Geraden
Ebenen und Geraden < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenen und Geraden: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:31 Fr 20.01.2006
Autor: Bea71

Aufgabe
Es sei die Ebene


[mm]E: x = \begin{pmatrix}3\\0\\7\end{pmatrix} + s\begin{pmatrix}1\\3\\2\end{pmatrix} + t\begin{pmatrix}2\\5\\7\end{pmatrix}[/mm]


gegeben. Bestimme die Variable [mm]a[/mm] in der Parameterdarstellung von [mm]g[/mm] so, dass gilt:


[mm]g: x = \begin{pmatrix}2\\1\\5\end{pmatrix} + r\begin{pmatrix}a\\1\\1\end{pmatrix}[/mm] und [mm]g[/mm] ist parallel zu [mm]E[/mm]



Wie kann ich dieses [mm]a[/mm] bestimmen wenn [mm]g[/mm] zu [mm]E[/mm] parallel sein soll.

Ich habe leider keine Ahnung, wie ich das machen soll. Vielleicht kann mir jemand einen Tipp geben? Wäre toll.



Gruß
Bea


[Ich habe diese Frage in keinem anderen Internet-Forum gestellt.]




        
Bezug
Ebenen und Geraden: zwei Wege
Status: (Antwort) fertig Status 
Datum: 11:56 Fr 20.01.2006
Autor: Roadrunner

Hallo Bea,

[willkommenmr] !!


Damit Gerade und Ebene parallel sind, müssen die Richtungsvektoren von Ebene und der Geraden linear abhängig sein:

[mm] $s*\vektor{1\\3\\2}+t*\vektor{2\\5\\7} [/mm] \ = \ [mm] \vektor{a\\1\\1}$ [/mm]

Hier musst Du nun ein Gleichungssystem aufstellen (zeilenweise). Aus den letzten beiden Zeilen lassen sich $r_$ und $s_$ ermitteln und damit das gesuchte $a_$ (Einsetzen in die erste Zeile).


Alternativ kannst Du einen Normalenvektor der Ebene [mm] $\vec{n}_E$ [/mm] bestimmen. Dieser muss dann auch senkrecht auf den Richtungsvektor der Geraden stehen:

[mm] $\vec{n}_E*\vektor{a\\1\\1} [/mm] \ = \ 0$


Gruß vom
Roadrunner


Bezug
                
Bezug
Ebenen und Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Mo 23.01.2006
Autor: Bea71

Danke für die schnelle Hilfe, bin aber noch nicht wirklich am Ziel. Lauten die Gleichungen

I.      1 s + 2 t = a ( oder ar)
II.     3 s + 5 t = 1 ( oder 1r)
III.    2 s + 7 t = 1 ( oder 1r)

Wäre schön, wenn mir jemand noch weiterhilft, da ich diese Aufgabe in der nächsten Stunde an der Tafel vorrechnen soll.
Lieben Gruß
Bea

Bezug
                        
Bezug
Ebenen und Geraden: Stimmt so ...
Status: (Antwort) fertig Status 
Datum: 11:54 Mo 23.01.2006
Autor: Roadrunner

Hallo Bea!


> I.      1 s + 2 t = a
> II.     3 s + 5 t = 1
> III.    2 s + 7 t = 1

[daumenhoch] So ist es richtig!

Nun mit Gleichung [II] und [III] eine Lösung für $s_$ und $t_$ ermitteln und daraus dann den gesuchten Parameter $a_$ ...


Gruß vom
Roadrunner


Bezug
                                
Bezug
Ebenen und Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Mo 23.01.2006
Autor: Bea71

Hallo Roadrunner,

jetzt habe ich die Gleichungen aufgelöst und bekomme folgende Ergebnisse, wo ich nicht sicher bin, ob die richtig sind:

t = 1/11
S = 4/22
a= 8/22.

Kannst Du mal schaun, ob das hinkommen kann. Vielen lieben Dank im Voraus.
Gruß
Bea  

Bezug
                                        
Bezug
Ebenen und Geraden: andere Lösung
Status: (Antwort) fertig Status 
Datum: 13:02 Mo 23.01.2006
Autor: Herby

nun aber ;-)

Hallo Bea,

ich habe für t dasselbe wie du, jedoch für [mm] s=\bruch{2}{11} [/mm] und für [mm] a=\bruch{4}{11} [/mm]



Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]