matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbenen in Param.-Form zeichnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Ebenen in Param.-Form zeichnen
Ebenen in Param.-Form zeichnen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenen in Param.-Form zeichnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 Mo 31.08.2009
Autor: Pille456

Aufgabe
Zeichnen Sie die Ebene:
E: x = [mm] \vektor{1\\2\\3}+r\vektor{1\\2\\3}+s\vektor{3\\4\\5} [/mm]

Hi!

Wir müssen gerade Ebenen zeichnen. Dazu oben die Beispielaufgabe. Laut Abiturrichtlinien müssen Ebenen so gezeichnet werden, dass man jeweil einen Punkt auf jeder Achse ausrechnet und diese zu einem Dreieck verbindet. Also z.B. [mm] x_1 [/mm] = [mm] x_2 [/mm] = 0 setzt und schaut wie [mm] x_3 [/mm] dann liegt, sodass die Ebenen gleichung erfüllt ist.
Diese recht einfachere Methode geht leider nur mit Ebenen in Koordinatenform und nicht in der Parameterform. Darum muss man die Parameterform immer erst in die Koordinatenform bringen.
Da bin ich leider etwas zu faul für (*g*), daher meine Frage: Gibt es da auch einen anderen Weg die gesuchten Punkte herauszufinden und wenn ja wie lautet dieser?

        
Bezug
Ebenen in Param.-Form zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Mo 31.08.2009
Autor: fencheltee


> Zeichnen Sie die Ebene:
>  E: x =
> [mm]\vektor{1\\2\\3}+r\vektor{1\\2\\3}+s\vektor{3\\4\\5}[/mm]
>  Hi!
>  
> Wir müssen gerade Ebenen zeichnen. Dazu oben die
> Beispielaufgabe. Laut Abiturrichtlinien müssen Ebenen so
> gezeichnet werden, dass man jeweil einen Punkt auf jeder
> Achse ausrechnet und diese zu einem Dreieck verbindet. Also
> z.B. [mm]x_1[/mm] = [mm]x_2[/mm] = 0 setzt und schaut wie [mm]x_3[/mm] dann liegt,
> sodass die Ebenen gleichung erfüllt ist.
>  Diese recht einfachere Methode geht leider nur mit Ebenen
> in Koordinatenform und nicht in der Parameterform. Darum
> muss man die Parameterform immer erst in die
> Koordinatenform bringen.
>  Da bin ich leider etwas zu faul für (*g*), daher meine
> Frage: Gibt es da auch einen anderen Weg die gesuchten
> Punkte herauszufinden und wenn ja wie lautet dieser?

also wenn du den schnittpunkt auf ner achse haben willst, zB. z-achse brauchst du ja den ansatz:
[mm] \vektor{x\\y\\z}=\vektor{0\\0\\z}=\vektor{1\\2\\3}+r\vektor{1\\2\\3}+s\vektor{3\\4\\5} [/mm]
mit der 1. + 2. zeile kriegst du ja folgende gleichungen:
0=1+r+3s
0=2+2r+4s
diese auflösen und dann ist
z=3+3r+5s mit den berechneten variablen von oben

sieht für mich nach mehr aufwand aus als über normalenform -> kartesische zu gehen?!

Bezug
        
Bezug
Ebenen in Param.-Form zeichnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Mo 31.08.2009
Autor: Al-Chwarizmi


> Zeichnen Sie die Ebene:

>     $\ E:\ x\ =\ [mm] \vektor{1\\2\\3}+r\vektor{1\\2\\3}+s\vektor{3\\4\\5} [/mm] $

>  Hi!
>  
> Wir müssen gerade Ebenen zeichnen. Dazu oben die
> Beispielaufgabe. Laut Abiturrichtlinien müssen Ebenen so
> gezeichnet werden, dass man jeweil einen Punkt auf jeder
> Achse ausrechnet und diese zu einem Dreieck verbindet. Also
> z.B. [mm]x_1[/mm] = [mm]x_2[/mm] = 0 setzt und schaut wie [mm]x_3[/mm] dann liegt,
> sodass die Ebenen gleichung erfüllt ist.
> Diese recht einfache Methode geht leider nur mit Ebenen
> in Koordinatenform und nicht in der Parameterform. Darum
> muss man die Parameterform immer erst in die
> Koordinatenform bringen.
> Da bin ich leider etwas zu faul für, daher meine
> Frage: Gibt es da auch einen anderen Weg die gesuchten
> Punkte herauszufinden und wenn ja wie lautet dieser?


Hallo Pille,

die beschriebene Methode mit den drei Achsenschnitt-
punkten wird in diesem Beispiel ohnehin schief gehen,
da diese Ebene alle drei Achsen im selben Punkt, nämlich
in O(0/0/0) schneidet. Das kann man erkennen, wenn
einem auffällt, dass der Stützvektor identisch mit dem
ersten Spannvektor ist.
Du hast also vorerst nur den Punkt O und brauchst dann
z.B. noch irgendeinen weiteren Punkt in mindestens
zwei der Koordinatenebenen. Für einen Punkt P in der
x-y-Ebene berechnest du also zum Beispiel den Spur-
punkt der Geraden  

    $g: x\ =\ [mm] \vektor{1\\2\\3}+s\vektor{3\\4\\5}$ [/mm]

in der x-y-Ebene, also mit z=0. Dasselbe dann z.B.
nochmals für einen Spurpunkt in der y-z-Ebene.

Nebenbei bemerkt: Für eine übersichtliche Zeichnung
im üblichen 3D-Koordinatensystem liegt die Ebene
denkbar ungünstig !



LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]