matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisEbenen in Koordinatengleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Ebenen in Koordinatengleichung
Ebenen in Koordinatengleichung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenen in Koordinatengleichung: Frage zu Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:15 Mi 20.10.2004
Autor: evelyn77

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Wenn ich 3 Vektoren geg.habe: (1/0/1)   (-1/-1/2)    (3/2/-1), dann die Vektorgleichung aufstelle.Das ist ja kein Problem.Ich brauche aber die Koordinatengleichung!!Wie geht das?Der nächste Schritt im Lösungsbuch ist x1= 1 + 2r + 2s
     x2=         r - 2s
     x3= 1     -r -2s
ich weiß, dass man dann die 3. Zeile mit s und r ersetzten muss, aber wie? Und wie kommt man überhaupt auf dieses LGS?
Wäre voll nett, wenn mir jemand helfen könnte!! Danke!!!!!!!!:)


        
Bezug
Ebenen in Koordinatengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Mi 20.10.2004
Autor: red-m

Hallo evelyn77,

was du da vorliegen hast ist jetzt ein Gleichungssystem. Ziel ist es nun, da die Koordinatengleichung gesucht ist, r und s aus diesen 3 Gleichungen zu eliminieren und aus 3 Gleichungen eine zumachen. Vorab möchte ich aber bemerken, dass die Gleichung für x2 so wie sie da steht nicht richtig ist. Eigentlich müsste alles so lauten:

x=x1=1+2r+2s
y=x2=0+1r+2s
z=x3=1 -1r -2s

Es ist nun folgendermaßen vorzugehen:
Um s zu eliminieren subtrahiert man einfach Gl.2 von Gl.1 (das ist natürlich nur in diesem Beispiel so einfach)
Also: x1-x2=1+2r+2s -(0+1r+2s)=1+2r+2s -1r -2s=1+1r
Da die Variable s jetzt noch in GL.3 enthalten ist, addieren wir Gl.1 und Gl.3
Also: x1+x3=1+2r+2s+1-1r-2s=2+1r

Wir haben jetzt:
x1 -x2=1+1r
x1+x3=2+1r

Um jetzt r zu eliminieren ziehen wir Gl.2 von Gl.1 ab
Also: x1-x2-(x1+x3)=1+1r-(2+1r)=-1
Jetzt wird die linke Seite noch vereinfacht:
-x2-x3=-1 oder auch -y-z=-1 oder y+z=1 (Koordinatengleichung)

Durch einsetzen der Punkte kann man dies nun überprüfen.

Zur Frage: das LGS entsteht aus der Parametergleichung:
( x )    ( 1 )       ( 2 )       ( 2 )
( y ) = ( 0 ) + r ( 1 ) + s ( 2 )
( z )    ( 0 )       (-1 )       (-2 )

   ( 1 )       ( 2r )    ( 2s )
= ( 0 ) +   ( 1r ) + ( 2s )
   ( 1 )       (-1r )    (-2s )

Das bedeutet für x muss gelten x=1+2r+2s, für y y=0+r+2s und für z: z=1-1r-2s.







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]