matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenEbenen-Darstellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Ebenen-Darstellung
Ebenen-Darstellung < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenen-Darstellung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:50 Mo 04.12.2006
Autor: Sumpfhuhn

Aufgabe
Gegeben sind drei Punkte A,B und C. Die Ortsvektoren [mm] \vec{a} [/mm] , [mm] \vec{b} [/mm]  und [mm] \vec{c} [/mm] dieser Punkte sind linear unabhängig. Geben sie eine Bedingung für die Zahlen r, s und t an, damit der Punkt mit dem Ortsvektor [mm] r*\vec{a} [/mm] + s* [mm] \vec{b} [/mm] + t* [mm] \vec{c} [/mm] in der durch A. B und C festgelegten Ebene liegt.

Hallo,
ich soll diese Aufgabe bearbeiten. Habe auch eine Idee entwickelt, aber komme mit der nicht so richtig weiter und vllt könnte sich wer von euch ja meine Idee anschauen und sagen, ob die überhaupt sinnvoll ist oder mir sogar eine Anregung geben in welche Richtung ich gehen muss.

[mm] E:\vec{x}= \vec{p} [/mm] + [mm] r*\vec{u} [/mm] + [mm] s*\vec{v} [/mm]

mit den gegeben Ortsvektoren bekomme ich dann:

[mm] \vec{a}+r*(\vec{b}-\vec{a})+s*(\vec{c}-\vec{a}) [/mm]

und dann dachte ich mir, dass ich es mit dem in der Aufgabe beschriebenen Orstvektor gleichsetze, aber ich komm da irgendwie nicht weiter.

Wäre echt lieb, wenn mir wer helfen könnte.

Vielen Dank im Voraus

lg
Sumpfhuhn

        
Bezug
Ebenen-Darstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Mo 04.12.2006
Autor: Zwerglein

Hi, sumpfhuhn,

> Gegeben sind drei Punkte A,B und C. Die Ortsvektoren
> [mm]\vec{a}[/mm] , [mm]\vec{b}[/mm]  und [mm]\vec{c}[/mm] dieser Punkte sind linear
> unabhängig. Geben sie eine Bedingung für die Zahlen r, s
> und t an, damit der Punkt mit dem Ortsvektor [mm]r*\vec{a}[/mm] + s*
> [mm]\vec{b}[/mm] + t* [mm]\vec{c}[/mm] in der durch A. B und C festgelegten
> Ebene liegt.

>  Hallo,
>  ich soll diese Aufgabe bearbeiten. Habe auch eine Idee
> entwickelt, aber komme mit der nicht so richtig weiter und
> vllt könnte sich wer von euch ja meine Idee anschauen und
> sagen, ob die überhaupt sinnvoll ist oder mir sogar eine
> Anregung geben in welche Richtung ich gehen muss.
>  
> [mm]E:\vec{x}= \vec{p}[/mm] + [mm]r*\vec{u}[/mm] + [mm]s*\vec{v}[/mm]
>  
> mit den gegeben Ortsvektoren bekomme ich dann:
>  
> [mm]\vec{a}+r*(\vec{b}-\vec{a})+s*(\vec{c}-\vec{a})[/mm]
>  
> und dann dachte ich mir, dass ich es mit dem in der Aufgabe
> beschriebenen Orstvektor gleichsetze, aber ich komm da
> irgendwie nicht weiter.

Alles OK soweit! Nur solltest Du nicht dieselben Buchstaben (r, s) verwenden, die in der Frage gegeben sind!
Schreib' lieber zunächst so:
[mm] \vec{a}+ m*(\vec{b}-\vec{a}) [/mm] + [mm] n*(\vec{c}-\vec{a})[/mm] [/mm]
Und nun formst Du um:
(1 - m - [mm] n)*\vec{a} [/mm] + [mm] m*\vec{b} [/mm] + [mm] n*\vec{c} [/mm] = [mm] \vec{d} [/mm]
Nun kannst Du die Konstanten bei den 3 Vektoren mit den Konstantenten Deiner Ausgangsgleichung "vergleichen":
r = (1 - m - n)
s = m
t = n
Und was bemerkst Du?
r + s + t = 1 !!

mfG!
Zwerglein

Bezug
                
Bezug
Ebenen-Darstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 Mo 04.12.2006
Autor: Sumpfhuhn

vielen lieben Dank für deine Mühe und verständliche Erklärung.

schönen Abend noch
Sumpfhuhn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]