matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbene parameterfrei
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Ebene parameterfrei
Ebene parameterfrei < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene parameterfrei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Mi 29.08.2007
Autor: kathi1234

Aufgabe
E: [mm] \vektor{1 \\ 2 \\ 3}+t\vektor{4 \\ 5 \\ 6}+w\vektor{0 \\ 0 \\ 1} [/mm]

Hallo ihr,
ich hab immer ziemliche Probleme Ebenen parameterfrei zu bekomme.
Hat jemand ein paar Tipps für mich, dass es mir vielleicht leichter fällt?
Die Ebene oben ist nur ein Beispiel!
Wäre sehr sehr nett!
Lg Kati

        
Bezug
Ebene parameterfrei: Welche Form?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 Mi 29.08.2007
Autor: Loddar

Hallo Kathi!


Welche Ebenen-Form möchtest Du denn erhalten?

-  Normalenform:      [mm] $\vec{n}*\left(\vec{x}-\vec{p}\right) [/mm] \ = \ 0$

-  Koordinatenform:   $a*x+b*y+c*z+d \ = \ 0$


Gruß
Loddar


Bezug
        
Bezug
Ebene parameterfrei: Normalenvektor
Status: (Antwort) fertig Status 
Datum: 17:46 Mi 29.08.2007
Autor: Loddar

Hallo Kathi!


Um z.B. in die Normalenform (s.o.) umzuformen, benötigen wir einen Normalenvektor [mm] $\vec{n}$ [/mm] der Ebene.

Diesen erhalten wir entweder über das MBKreuzprodukt der beiden Richtungsvektoren.  Oder Du verwendest 2-mal das MBSkalarprodukt mit den Richtungsvektoren:  [mm] $\vec{n} [/mm] \ = \ [mm] \vektor{x\\y\\z}$ [/mm]

[mm] $$\vektor{x\\y\\z}*\vektor{4\\5\\6} [/mm] \ = \ 4x+5y+6z \ = \ 0$$
[mm] $$\vektor{x\\y\\z}*\vektor{0\\0\\1} [/mm] \ = \ z \ = \ 0$$

Daraus nun den Normalenvektor bestimmen und in die o.g. Form einsetzen. Für [mm] $\vec{p}$ [/mm] den Stützvektor der Ebene einsetzen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]