matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenEbene die Gerade enthält
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Ebene die Gerade enthält
Ebene die Gerade enthält < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene die Gerade enthält: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:01 Do 18.04.2013
Autor: MrItalian

Aufgabe 1
Gegeben: G: [mm] $\vec [/mm] x$ = [mm] \vektor{1 \\ 2 \\ 3} [/mm] + [mm] r\vektor{2 \\ 1 \\ 2} [/mm] und [mm] E_2: [/mm] 2x + 3y - 4z = -5

Aufgabe 2
Geben Sie eine Normalenform einer Ebene E an, die die Gerade G enthält, und senkrecht auf der Ebene [mm] E_2 [/mm] steht.

Mein bisheriger Ansatz war folgender:
Da die gesuchte Ebene senkrecht zur Ebene [mm] E_2 [/mm] liegt, brauche ich den Normalenvektor von E2 also:
[mm] $\vec [/mm] n$ = [mm] \vektor{2 \\ 3 \\ -4} [/mm]
Die Normalenform lautet im allgemeinen ja [mm] $\vec [/mm] n$ * [mm] ($\vec [/mm] r$ - [mm] $\vec r_1$) [/mm] = 0
Jetzt die entscheidende Frage (falls mein bisheriger Ansatz richtig ist): Wo bekomme ich [mm] $\vec r_1$ [/mm] her? Ist [mm] $\vec r_1$ [/mm] der Richtungsvektor von G?

Viele Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ebene die Gerade enthält: Antwort
Status: (Antwort) fertig Status 
Datum: 01:22 Do 18.04.2013
Autor: reverend

Ciao Signore Italiano,

> Gegeben: G: [mm]\vec x[/mm] = [mm]\vektor{1 \\ 2 \\ 3}[/mm] + [mm]r\vektor{2 \\ 1 \\ 2}[/mm]
> und [mm]E_2:[/mm] 2x + 3y - 4z = -5
> Geben Sie eine Normalenform einer Ebene E an, die die
> Gerade G enthält, und senkrecht auf der Ebene [mm]E_2[/mm] steht.

>

> Da die gesuchte Ebene senkrecht zur Ebene [mm]E_2[/mm] liegt,
> brauche ich den Normalenvektor von E2 also:
> [mm]\vec n[/mm] = [mm]\vektor{2 \\ 3 \\ -4}[/mm]

Questo è del tutto corretto. [ok]

> Die Normalenform lautet im
> allgemeinen ja [mm]\vec n[/mm] * ([mm]\vec r[/mm] - [mm]\vec r_1[/mm]) = 0

Ah, si! [ok]

> Jetzt die entscheidende Frage (falls mein bisheriger
> Ansatz richtig ist): Wo bekomme ich [mm]\vec r_1[/mm] her? Ist [mm]\vec r_1[/mm]
> der Richtungsvektor von G?

Indubbiamente, no. Invece considera [mm] \vec{r}_1=\vektor{1\\2\\3}. [/mm]

> Viele Grüße

(ganz nebenbei: den Normalenvektor der gesuchten Ebene hast Du auch noch nicht. Wie findest Du den?)

Grüße
reverend

Bezug
                
Bezug
Ebene die Gerade enthält: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Do 18.04.2013
Autor: MrItalian

Grazie per il tuo aiuto :)

> (ganz nebenbei: den Normalenvektor der gesuchten Ebene hast
> Du auch noch nicht. Wie findest Du den?)

Danke das du das erwähnst, sonst hätte ich bisherigen $ [mm] \vec [/mm] n $ genommen.
Mir ist folgende Idee eingefallen. Es gilt ja, zwei Vektoren orthogonal zueinander sind, wenn das Skalarprodukt verschwindet richtig?
Also rechne ich:

$ [mm] \vektor{2 \\ 3 \\ -4} [/mm] $ * $ [mm] \vektor{x\\ y \\ z} [/mm] $

Und x, y und z wähle ich mir dann selbst so aus, damit das Skalarprodukt anschließend 0 ist, richtig?

Viele Grüße

Bezug
                        
Bezug
Ebene die Gerade enthält: Antwort
Status: (Antwort) fertig Status 
Datum: 06:48 Fr 19.04.2013
Autor: fred97


> Grazie per il tuo aiuto :)
>  
> > (ganz nebenbei: den Normalenvektor der gesuchten Ebene hast
> > Du auch noch nicht. Wie findest Du den?)
>  
> Danke das du das erwähnst, sonst hätte ich bisherigen
> [mm]\vec n[/mm] genommen.
>  Mir ist folgende Idee eingefallen. Es gilt ja, zwei
> Vektoren orthogonal zueinander sind, wenn das Skalarprodukt
> verschwindet richtig?
>  Also rechne ich:
>  
> [mm]\vektor{2 \\ 3 \\ -4}[/mm] * [mm]\vektor{x\\ y \\ z}[/mm]
>  
> Und x, y und z wähle ich mir dann selbst so aus, damit das
> Skalarprodukt anschließend 0 ist, richtig?


Nicht ganz !

Der gesuchte Normalenvektor ist auch noch ortogonal zum Rivhtungsvektor der Gerade G.

FRED

>  
> Viele Grüße


Bezug
                                
Bezug
Ebene die Gerade enthält: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Sa 20.04.2013
Autor: MrItalian

Hi,

ich habe jetzt folgendes gerechnet:
2x + 3y -4z = 0 <-- Normalenvektor von [mm] E_2 [/mm]
2x + y + 2z = 0 <-- Richtungsvektor von G
---------------------
2y -6z = 0
y = 3z
z = t
Daraus ergibt sich folgende Ebenengleichung:

$ [mm] \vektor{-5/2t \\ 3t \\ t} [/mm] $ $ [mm] \vektor{ x-1 \\ y-2 \\ z-3} [/mm] $

Wobei ich jetzt für das t beispielsweise 1 einsetzen kann. Ist das alles richtig soweit?

Vielen Grüße

PS: Danke auch an dir FRED

Bezug
                                        
Bezug
Ebene die Gerade enthält: Antwort
Status: (Antwort) fertig Status 
Datum: 08:50 So 21.04.2013
Autor: fred97


> Hi,
>  
> ich habe jetzt folgendes gerechnet:
>  2x + 3y -4z = 0 <-- Normalenvektor von [mm]E_2[/mm]
>  2x + y + 2z = 0 <-- Richtungsvektor von G
>  ---------------------
>  2y -6z = 0
>  y = 3z
>  z = t
>  Daraus ergibt sich folgende Ebenengleichung:
>  
> [mm]\vektor{-5/2t \\ 3t \\ t}[/mm] [mm]\vektor{ x-1 \\ y-2 \\ z-3}[/mm]


Ja, Du kannst t=1 wählen, aber damit steht oben noch keine Gleichung !

So muß es aussehen:

[mm]\vektor{-5/2 \\ 3 \\ 1}[/mm] [mm]\vektor{ x-1 \\ y-2 \\ z-3}=0[/mm]

FRED


>  
> Wobei ich jetzt für das t beispielsweise 1 einsetzen kann.
> Ist das alles richtig soweit?
>  
> Vielen Grüße
>  
> PS: Danke auch an dir FRED


Bezug
                                                
Bezug
Ebene die Gerade enthält: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 So 21.04.2013
Autor: MrItalian

Danke nochmals für deine Hilfe :).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]